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A Appendix

A.1 Asymptotic analysis of one-parameter class

Here we state our formal assumptions for asymptotic analysis and provide detailed analytical

comparisons of these bands.

A.1.1 Regularity conditions for asymptotic analysis

For the asymptotic results in this paper, we impose the following regularity conditions on

the general model in Section 2.

Assumption 1. The following asymptotic limits are all pointwise as n → ∞, assuming a

fixed true data generating process.

(i) The true parameter µ lies in the interior of a convex and open parameter spaceM⊂ Rp.
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(ii) There exists an estimator µ̂ of µ such that
√
n(µ̂− µ) d→ Np(0p,Ω). The p× p matrix

Ω is symmetric positive semidefinite (possibly singular).

(iii) There exists an estimator Ω̂ of Ω such that Ω̂ p→ Ω.

(iv) The transformation h : M→ Rk is continuously differentiable onM. Write the Jaco-

bian as ḣ(·) = (ḣ1(·), . . . , ḣk(·))′ ∈ Rk×p, where ḣj(µ̃) ≡ ∂hj(µ̃)/∂µ̃ for any µ̃ ∈M.

(v) All diagonal elements Σjj of the k × k matrix Σ ≡ ḣ(µ)Ωḣ(µ)′ are strictly positive.

The assumption imposes standard regularity conditions. Observe that we do not restrict

the data to be i.i.d. Condition (i) requires µ to lie in the interior of a convex parameter space.

Conditions (ii) and (iii) require the existence of a consistent and asymptotically normally

estimator µ̂ of µ and a consistent estimator Ω̂ of the asymptotic variance Ω. Note that Ω

may be singular, which is important in applications to impulse response function estimation

with non-stationary data, cf. Section 5. Condition (iv) requires the transformation from

underlying model parameters µ to parameters of interest θ to be smooth, as is often the case

in applied work. Finally, condition (v) implies that the plug-in estimator θ̂j ≡ hj(µ̂) has

non-zero asymptotic variance for each j. However, we do not require Σ to have full rank,

so that we cover cases with k > p as well as the degenerate VAR applications mentioned in

Lütkepohl et al. (2015b, p. 807).

A.1.2 Coverage probability

Next, we derive the coverage probability of any band in the one-parameter class as a function

of the critical value c. Analogous results are common in the theory of multiple testing

(Lehmann & Romano, 2005, chapter 9).

Lemma 1. Let Assumption 1 hold. Let {âj, b̂j}j=1,...,k be a collection of scalar random
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variables such that âj, b̂j = op(n−1/2) as n→∞ for j = 1, . . . , k. Then, for any c > 0,

P
(
θ ∈ ×k

j=1

[
θ̂j − σ̂jc− âj, θ̂j + σ̂jc+ b̂j

])
→ P

(
max
j=1,...,k

∣∣∣Σ−1/2
jj Vj

∣∣∣ ≤ c
)
,

where V = (V1, . . . , Vk)′ ∼ Nk(0k,Σ), and Σjj is the j-th diagonal element of Σ.

Proof. See Appendix A.7.1.

The asymptotically negligible random variables {âj, b̂j}j=1,...,k in Lemma 1 allow for anal-

ysis of rectangular bands whose edges are all within asymptotic order op(n−1/2) of a band

B̂(c) in our one-parameter class. This will permit us to consider bands obtained by projection

and bootstrap strategies, as explained below.

A.1.3 µ-projection band

We now show that the µ-projection band is contained in our one-parameter class, up to

asymptotically negligible terms, provided Assumption 1 holds and Ω is positive definite.1

Proposition 2. Under Assumption 1 and positive definiteness of Ω, the µ-projection band

equals B̂(χp,1−α) up to terms of order op(n−1/2); that is,

Ĉµ-proj =
k×
j=1

[
θ̂j − σ̂jχp,1−α + op(n−1/2), θ̂j + σ̂jχp,1−α + op(n−1/2)

]
.

Proof. See Appendix A.7.8.

A.1.4 Detailed comparisons of popular bands

We here provide a detailed analytical comparison of popular bands in the one-parameter

class. For any two bands in the one-parameter class, the ratio of their critical values yields

1A heuristic version of the argument appears in Cox & Ma (1995). The result is well known in the special
case of h(·) being a linear map, as it serves as the basis for Scheffé confidence bands in linear regression.
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the ratio of the lengths of each of their component intervals. Henceforth, we will call this

number the relative width of the band, which is a well-defined concept within our one-

parameter class (outside this class, the relative length of component intervals could vary

across components j = 1, . . . , k, and relative lengths could be data-dependent).

1) cpointwise ≤ csup-t ≤ cŠidák: The sup-t band is optimal within the one-parameter class

since it selects the critical value c as the smallest value that guarantees asymptotic simul-

taneous coverage of 1 − α.2 The sup-t critical value depends on the correlation structure

Σ of the estimator θ̂, but the pointwise and Šidák critical values constitute its best-case

and worst-case values, respectively; cf. Lemma 2 in Appendix A.1.5. On the one hand, it

is straight-forward to show that the sup-t critical value must weakly exceed the pointwise

critical value, with equality only if the elements of θ̂ are asymptotically perfectly correlated.

On the other hand, the sup-t critical value is always weakly smaller—regardless of the di-

mensions k and p—than both the Šidák critical value and the µ-projection critical value,

cf. Lemma 3 in Appendix A.1.5 for details. Moreover, if k ≤ p, the sup-t critical value

equals the Šidák critical value if and only if the elements of θ̂ are asymptotically indepen-

dent. Hence, if k ≤ p, the pointwise and Šidák bands can be thought of as best-case and

worst-case scenarios for the sup-t band, respectively. In applications where the elements of

θ̂ are close to uncorrelated, there is little loss in using the simple Šidák band instead of the

sup-t band, although the computational cost of the latter band is also small, cf. Section 2.

2) cŠidák, cPointwise, cBonferroni, cθ-projection: Our framework allows us to compare the many

suboptimal but popular confidence bands. Except for the sup-t band, the relative widths of

all other bands depend only on the significance level α and the dimensions p and k of the

model and parameter of interest. From the perspective of first-order asymptotic analysis, no

2This is well known in the single-step multiple testing literature (Lehmann & Romano, 2005, chapter 9).
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Comparison of critical values for confidence bands
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Figure 4: Relative critical values of the pointwise, Šidák, Bonferroni, and θ-projection bands.
The dimension k = dim(θ) is along the horizontal axis. The three colored curves correspond to the
significance levels α = 0.05 (black), α = 0.1 (red), and α = 0.32 (blue).

additional information is needed to compare these different bands.3

Figure 4 plots the relative widths of the pointwise, Šidák, Bonferroni, and θ-projection

confidence bands for different values of the dimension k of θ and different significance levels

α. We do not plot the µ-projection critical value χp,1−α, but it is clear that it exceeds the

θ-projection critical value χk,1−α if and only if p > k.

3Indeed, researchers can decide on a band before obtaining the relevant data, as long as the model has
been specified. The relative widths of the pointwise, Šidák, Bonferroni, and θ-projection bands are the same
in any finite sample. However, the comparison with µ-projection is asymptotic.
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2.1) cPointwise ≤ cŠidák: The first display of the figure shows that, while the relative width

of the Šidák and pointwise bands must exceed one, it is below 2 for k ≤ 50 and α ≤ 0.1

(hence, this also applies to sup-t vs. pointwise). In fact, Lemma 4 in Appendix A.1.5 states

the well-known result that the Šidák critical value grows very slowly with k, specifically at

rate
√

log k, so that there is little penalty in terms of width incurred from including additional

parameters of interest in θ.4

2.2) cŠidák ≤ cBonferroni, cθ-projection: The second display of the figure shows that the Bon-

ferroni critical value always exceeds the Šidák one, but they are within 4% of each other for

all common significance levels. Finally, the last display of the figure shows that θ-projection

leads to much wider bands than Šidák (and thus sup-t), unless k is very small. Hence, there

appears to be no good reason to use θ-projection (with the usual Wald critical value). See

Appendix A.1.5 for analytical results supporting the graphical evidence in Figure 4.

2.3) cŠidák ≤ cµ-projection in many relevant models: The Šidák (and sup-t) bands are

narrower than the µ-projection band in most practical cases. While the µ-projection band

is always wider than the sup-t band, it can be narrower than the Šidák band if k � p.

However, Figure 5 in Appendix A.1.5 shows that for this to happen at usual significance

levels, either the number k of parameter of interest must be in the 1,000s, or the number p

of underlying model parameters must be less than 10.

2.4) cBonferroni ≤ cθ-projection ≤ cµ-projection if α < 0.5 and 2 ≤ k ≤ p: If α < 0.5

and k ≥ 2, then χ1−α/k < χk,1−α, i.e., in this case the Bonferroni band is narrower than

θ-projection. This result was proven by Alt & Spruill (1977), although it is seemingly not

well known. As a corollary, the Bonferroni band is also narrower than the µ-projection band

4Of course, the accuracy of the asymptotic normal approximation may deteriorate for large k.
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if p ≥ k.

A.1.5 Analytical results on one-parameter critical values

Finally, we provide supplementary analytical and graphical results comparing the critical

values listed in Table 1. Most of these results are well known in the multiple comparisons

literature, but it is useful to state them in terms of our notation.

The following lemma states that the pointwise critical value and the Šidák critical value

provide extreme bounds on the sup-t critical value q1−α(Σ), cf. Equation (6). These bounds

are sharp if k ≤ p, in which case a more precise expression for the sup-t critical value would

need to rely on the specific correlation structure of θ̂. Dunn (1958, 1959) conjectured a

version of this statement, since proven by Šidák (1967).

Lemma 2. Let Sk denote the set of k × k symmetric positive semidefinite matrices. Define

Sp,k ≡
{

Σ̃ ∈ Rk×k
∣∣∣ Σ̃ ∈ Sk, rank(Σ̃) ≤ p, Σ̃jj > 0 for all j

}
.

For all ζ ∈ (0, 1),

inf
Σ̃∈Sp,k

qζ(Σ̃) = χζ , sup
Σ̃∈Sp,k

qζ(Σ̃) ≤ χζ1/k .

The inequality for the supremum is an equality if k ≤ p.

Proof. See Appendix A.7.2.

Lemma 2 provides sharp bounds on the sup-t critical value when k ≤ p. The following

lemma provides a slightly more informative upper bound in the case k > p. It states that

the sup-t critical value is also upper-bounded by the µ-projection critical value, although

this bound is not sharp if k > p ≥ 2.
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Lemma 3. Using the same notation as Lemma 2, we have for all ζ ∈ (0, 1),

sup
Σ̃∈Sp,k

qζ(Σ̃) ≤ min
{
χζ1/k , χp,ζ

}
.

If k > p ≥ 2 and ζ ∈ (0, 1), then

χζ1/p < sup
Σ̃∈Sp,k

qζ(Σ̃) < χp,ζ .

Proof. See Appendix A.7.3.

The next lemma provides analytical results to complement the visual observations in

Figure 4 about the pointwise, Šidák, Bonferroni, and θ-projection critical values. It shows

that (i) the Bonferroni critical value always exceeds Šidák, (ii) the θ-projection critical value

always exceeds Šidák, and (iii) the Šidák critical value grows at rate
√

log k in k. These

results are well known in the multiple comparisons literature.

Lemma 4.

(i) χ1−α/k > χ(1−α)1/k for all α ∈ (0, 1) and k ≥ 2.

(ii) χk,1−α > χ(1−α)1/k for all α ∈ (0, 1) and k ≥ 2.

(iii) There exists ε > 0 such that, for all α ∈ (0, 1) and k ≥ 1,

ε
√

log k −
√
−2 log(1− α) ≤ χ(1−α)1/k ≤

√
2 log 2k +

√
−2 logα.

Proof. See Appendix A.7.4.

Figure 5 compares the Šidák and µ-projection critical values. In Appendix A.1.4 we

argued that Šidák and Bonferroni bands are both narrower than µ-projection if α < 0.5 and

k ≤ p. What if k > p? The figure shows the smallest value of k needed for the µ-projection
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Comparison of Šidák and µ-projection critical values
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Figure 5: Smallest value of k needed for the Šidák band to be asymptotically weakly wider than
the µ-projection band, as a function of p. Horizontal axis: p, vertical axis: k in log scale. The
curves correspond to significance levels α = 0.05 (black), α = 0.1 (red), and α = 0.32 (blue).

band to be asymptotically weakly narrower than Šidák. Clearly, for this to happen at usual

significance levels, either the model dimension p must be very small, or the number k of

parameters of interest must be in the 1,000s.

Finally, we state the simple result that the sup-t critical value is continuous in the

variance-covariance matrix Σ. This result implies the validity of the plug-in sup-t band,

cf. Section 2.

Lemma 5. For any ζ ∈ (0, 1), the function Σ̃ 7→ qζ(Σ̃) defined in equation (6) is continuous

on the set Sp,k defined in Lemma 2 in Appendix A.1.5.

Proof. See Appendix A.7.5.
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A.2 Implementing the sup-t band

Here we discuss an alternative bootstrap procedure, and we state formal results guaranteeing

the validity of the plug-in, bootstrap, and Bayesian bands in Section 2.

Alternative bootstrap procedure. Algorithm 3 defines a well-known alternative

critical-value-based bootstrap band, often used in the nonparametric econometrics literature.

The procedure first computes the standard deviation σ̂∗j of the bootstrap draws of θ̂j, for

each j. It then computes a bootstrap approximation q̂1−α to the sup-t critical value q1−α(Σ).

Finally, the band is given by B̂(q̂1−α), except that the bootstrap standard errors σ̂∗j are

used in place of the delta method standard errors σ̂j. Thus, Algorithm 3 does not require

evaluation of the partial derivatives of h(·). Unlike the quantile-based bootstrap band, the

critical-value-based band is symmetric around the point estimate θ̂ in any finite sample.

Proposition 3 below shows that the critical-value-based band is asymptotically equivalent

with the sup-t band B̂(q1−α(Σ)) if the bootstrap for µ̂ is valid and the bootstrap standard

errors σ̂∗j are consistent.

The critical-value-based bootstrap band is finite-sample equivalent (up to minor nu-

merical details) with the bootstrap-adjusted Bonferroni or projection (“Wald”) bands of

Lütkepohl et al. (2015a,b). Lütkepohl et al. view their approach as a method for adjusting

downward the critical values used in the Bonferroni or projection approaches, in order to

mitigate the conservativeness of the original bands. As our Algorithm 3 makes clear, the

“bootstrap-adjusted” procedure is best thought of as a direct bootstrap implementation of

the sup-t band. This interpretation is useful from a practical perspective: The purpose of

the bootstrap is to deliver good approximations of the bootstrap standard errors and the

bootstrapped sup-t quantile, so the bootstrap procedure—including the number of bootstrap

draws—should be designed with these goals in mind.

In principle, Algorithm 3 could also be used to construct a Bayesian band with simulta-
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Algorithm 3 Critical-value-based bootstrap band
1: Let P̂ be the bootstrap distribution of µ̂
2: Draw N samples µ̂(1), . . . , µ̂(N) from P̂

3: for ` = 1, . . . , N do
4: θ̂(`) = h(µ̂(`))
5: end for
6: for j = 1, . . . , k do
7: Compute the empirical standard deviation σ̂∗j of draws θ̂(1)

j , . . . , θ̂
(N)
j

8: end for
9: for ` = 1, . . . , N do
10: m̂(`) = maxj=1,...,k

|θ̂(`)
j −θ̂j |
σ̂∗
j

11: end for
12: Let q̂1−α be the 1− α empirical quantile of the draws m̂(1), . . . , m̂(N)

13: Ĉ =×k
j=1[θ̂j − σ̂∗j q̂1−α, θ̂j + σ̂∗j q̂1−α]

neous credibility 1− α. However, since the algorithm is based on t-statistics, it appears less

well motivated from a finite-sample Bayesian perspective, except perhaps in cases where the

posterior distribution is exactly Gaussian (as in Liu, 2011, chapter 2.9).

Theoretical results. According to Lemma 5 in Appendix A.1.5, the sup-t critical value

(6) is a continuous function of the (possibly singular) variance-covariance matrix Σ. This

implies the validity of the plug-in implementation of the sup-t band.

Next, we state a result guaranteeing that the bootstrap and Bayesian implementations

of the sup-t band in Section 2 deliver bands with frequentist asymptotic validity. In the

proposition, the auxiliary random variable µ̂∗ should be thought of as a bootstrap draw of

µ̂ or a draw from the posterior of µ.

Proposition 3. Let Assumption 1 hold. Let µ̂∗ ∈ Rp be a random vector whose distribu-

tion conditional on the data is denoted P̂ . Let P̂M denote the distribution of
√
n(µ̂∗ − µ̂),
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conditional on the data. Let PM denote the distribution Np(0p,Ω). Assume

ρ(P̂M , PM) p→ 0 as n→∞,

where ρ(·, ·) denotes the Bounded Lipschitz metric or any other metric that metrizes weak

convergence of probability measures on Rp.

(i) Assume for each j = 1, . . . , k, there exists a random variable σ̂∗j such that
√
nσ̂∗j

p→ Σ1/2
jj .

Let q̂1−α denote the 1 − α quantile of the distribution of maxj(σ̂∗j )−1|hj(µ̂∗) − hj(µ̂)|,

conditional on the data (and thus also conditional on the σ̂∗j ). Then

q̂1−α
p→ q1−α(Σ).

(ii) Denote the ζ quantile of hj(µ̂∗), conditional on the data, by Q̂j,ζ. Define ζ̂ as the largest

value of ζ ∈ [0, 1/2] such that P̂ (h(µ̂∗) ∈ ×k
j=1[Q̂j,ζ , Q̂j,1−ζ ]) ≥ 1 − α, conditional on

the data. Let Φ(·) denote the standard normal CDF. Then

ζ̂
p→ ζ∗ ≡ Φ(−q1−α(Σ)).

(iii) Under the same conditions as in (ii), we have, for any j = 1, . . . , k,

Q̂j,ζ̂ = θ̂j − σ̂jq1−α(Σ) + op(n−1/2),

Q̂j,1−ζ̂ = θ̂j + σ̂jq1−α(Σ) + op(n−1/2).

Proof. See Appendix A.7.9.
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A.3 Decision theoretic details

This section gives technical details for the decision theoretic analysis in Section 4.

Gaussian decision problem. The argument for invariance of the decision problem in

Section 4 is standard and we sketch it here for the sake of exposition. See Berger (1985,

section 6.2.2) for a definition of invariant decision problems. Let T ≡ {fλ(x) = x + λ |

λ ∈ Rp} denote the group of translations of the data X by arbitrary vectors λ ∈ Rp. First,

we note that the Gaussian statistical model (7) is invariant under T . Second, for any data

transformation fλ ∈ T and any action C = ×k
j=1[aj, bj] ∈ R, the alternative action given

by C̃ ≡ Gλ + C = ×k
j=1[g′jλ + aj, g

′
jλ + bj] ∈ R (where g′j is the j-th row of G) satisfies

1{Gµ ∈ C} = 1{G(λ+ µ) ∈ C̃} and L(C) = L(C̃) for all µ ∈ Rp.

Characterization of equivariant bands. Here we formally state the characterization

of translation equivariant bands used in Section 4.

Lemma 6. Ceq = {C : Rp → R | C(x) = Gx+R, R ∈ R }.

Proof. See Appendix A.7.6.
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A.4 Confidence bands for impulse response functions

In this section we review the literature on confidence bands for impulse response functions

and give additional details of the VAR application.

Literature review. Here we briefly review the literature on confidence bands for im-

pulse response functions, as well as the closely related literature that constructs confidence

bands for path forecasts.5 Hymans (1968) constructs path forecast bands using θ-projection.

Sims & Zha (1999) propose a procedure for plotting the principal components decomposi-

tion of the variance-covariance matrix, although this does not lead to a confidence band in

the sense of this paper. Lütkepohl (2005, pp. 115–116) recommends the Bonferroni band.

Jordà (2009) and Jordà & Marcellino (2010) develop projection-like confidence bands which

control the “Wald coverage”, in the terminology of Jordà et al. (2013); however, these bands

do not control simultaneous coverage in the usual sense of equation (2) (cf. Wolf & Wun-

derli, 2015, section 3.3). Lütkepohl et al. (2015a,b) mention the Šidák band and propose

bootstrap adjustments of the Bonferroni, µ-projection, and θ-projection procedures to make

these less conservative; the adjusted procedures are essentially equivalent with the bootstrap

sup-t band in Appendix A.2. Wolf & Wunderli (2015) use a bootstrap sup-t band to con-

struct confidence bands for path forecasts (but not VAR impulse responses). Inoue & Kilian

(2016) summarize estimation uncertainty for impulse responses using “shotgun plots”, i.e.,

random samples from a bootstrapped confidence ellipsoid.6 Lütkepohl et al. (2016) con-

struct highest-density rectangular regions from bootstrap draws of the impulse responses,

which is asymptotically equivalent to θ-projection under Assumption 1 and rank(Σ) = k.

5The two problems are equivalent (only) in Gaussian time series models (Wolf & Wunderli, 2015, p. 361).
6This deliberately does not generate a rectangular confidence region. The smallest rectangular region

containing the Inoue & Kilian (2016) confidence ellipsoid equals the θ-projection confidence band, using the
bootstrapped critical value and standard errors.
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Bruder & Wolf (2018) construct a “balanced bootstrap band” using pre-pivoting; their band

is asymptotically equivalent with the sup-t band defined in this paper under our assumptions.

VAR model and impulse responses. The VAR model assumes that the d-dimensional

vector yt = (y1,t, . . . , yd,t)′ of observed time series is driven in an autoregressive manner by a

d-dimensional vector εt = (ε1,t, . . . , εd,t)′ of unobserved economic shocks:

yt = ν +
τ∑
`=1

A`yt−` +Hεt, t = 1, 2, . . . , T.

The intercept vector ν is d× 1, while the lag coefficient matrices A` and the impact matrix

H are each d × d. The VAR lag length τ is assumed finite here. The shocks are a strictly

stationary martingale difference sequence with identity variance-covariance matrix:

E[εt | εt−1, εt−2, . . . ] = 0d, Var(εt) = Id.

The identified model parameters are µ ≡ (ν ′, vec(A1)′, . . . , vec(Aτ )′, vech(Ψ)′)′, where Ψ ≡

HH ′ is the one-step forecast error variance-covariance matrix.

The impulse response matrix at horizon ` is given by Θ` ≡ ∂yt+`/∂ε
′
t. It can be computed

by the recursion

Θ0 = H, Θ` =
min{`,τ}∑
b=1

AbΘ`−b, ` = 1, 2, . . .

We are interested in the impulse response function of the first observed variable to the first

shock, from horizon 0 to k − 1: θ ≡ (Θ0,11,Θ1,11, . . . ,Θk−1,11)′, where Θ`,11 denotes the

(1, 1) element of Θ`. Since H is only identified up to Ψ = HH ′, θ is not identified without

further assumptions (Stock & Watson, 2016). We may point identify θ by imposing exclusion

restrictions on H or on Θ` for various ` (or as `→∞). Alternatively, we may assume that

an external instrument zt is available and satisfies E[ztε1,t] 6= 0 and E[ztεi,t] = 0 for i ≥ 2
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(Stock & Watson, 2012; Mertens & Ravn, 2013). However point identification is achieved,

there exists a function h(·) such that θ = h(µ).7 This function is nonlinear and typically

continuously differentiable (Lütkepohl, 2005, chapter 3.7). Lütkepohl (2005) and Kilian &

Lütkepohl (2017) review limit theory for the least-squares estimator µ̂, bootstrap methods,

and posterior sampling in VARs.8

Details of empirical implementation. To simplify comparisons with the bootstrap

and Bayes procedures, the asymptotic variance of the VAR estimator µ̂ is calculated under

the assumption of homoskedastic shocks εt. However, any of our procedures can be extended

to allow for heteroskedasticity using standard methods.

The bootstrap is a homoskedastic recursive residual bootstrap. We use 10,000 bootstrap

draws. For Bayesian inference we use a maximally diffuse normal-inverse-Wishart prior,

and we sample from the posterior using its closed-form expression under Gaussian shocks

(Uhlig, 2005, Appendix B). We use 10,000 posterior draws. The bootstrap and Bayesian

procedures treat pre-sample observations of yt as fixed. The plug-in sup-t quantile q1−α(Σ̂)

is approximated using 100,000 normal draws. We adjust for the fact that the sample for

the external instrument is smaller than the sample for the VAR variables: The variance-

covariance matrix for the VAR least-squares estimator is computed on the larger sample

and then stitched together with the remaining variance-covariance on the smaller sample. It

takes less than 3 minutes to compute all bootstrap and Bayes bands using Matlab R2016b

on a personal laptop (2.60 GHz processor, single core, 8 GB RAM).

7In the case of the external instrument, we augment the vector µ by the parameter vector γ = E[(Yt −
E[Yt | Yt−1, . . . , Yt−τ ])zt] (Montiel Olea et al., 2016).

8In cointegrated models as well as certain stationary models, the asymptotic variance Ω of µ̂ may be
singular. Our theory and methods allow for singularities.
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Additional empirical results. Figures 6 and 7 compare all common bands in the

one-parameter class for the recursive and external instrument specifications, including θ-

projection and µ-projection.9 The µ-projection band is given by the asymptotic approxi-

mation B̂(χp,1−α). Evidently, both projection bands are substantially wider than the sup-t,

Šidák, and Bonferroni bands, as theory predicts. The µ-projection band is wider than the

θ-projection band since p > k.

9A caveat is that the asymptotic validity of the projection bands rests on the asymptotic variances Ω and
Σ in Assumption 1 being positive definite, which is not necessarily guaranteed in the VAR setting.
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IRF confidence bands: IV identification, with projection
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Figure 6: 68% confidence bands for IRF of IP to 1-stdev contractionary monetary policy shock,
external instrument identification. See caption for Figure 2.

IRF confidence bands: recursive identification, with projection
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Figure 7: 68% confidence bands for IRF of IP to 1-stdev contractionary monetary policy shock,
recursive identification. See caption for Figure 2.
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A.5 VAR simulation study

Here we present Monte Carlo evidence on the coverage probability and average width of

simultaneous confidence bands for VAR impulse response functions.

Design. Following Lütkepohl et al. (2015b), we consider the bivariate VAR

 y1,t

y2,t

 =
τ∑
`=1

 ϕ · 1(` = 1) 0

0.5`−2 0.5`−2


 y1,t−`

y2,t−`

+

 1 0

0.3
√

1− 0.32


 ε1,t

ε2,t

 ,

where (ε1,t, ε2,t)′ i.i.d.∼ N2(02, I2). For lag length τ = 1, this is the data generating process

considered by Lütkepohl et al. (2015b). The parameter ϕ indexes the persistence of the

VAR. We consider designs with τ ∈ {1, 4} and ϕ ∈ {0, 0.5, 0.9, 1}. Some of our designs

assume the availability of an external instrument

zt = ε1,t +
√

1/R2 − 1 · vt,

where vt i.i.d.∼ N(0, 1), independent of (ε1,t, ε2,t). Note that R2 = Var(ε1,t)/Var(zt). We

consider the values R2 ∈ {0.1, 0.5}.

We compute confidence bands for the impulse response function of y2,t to ε1,t. The

VAR is either estimated under recursive identification (ordering ε1,t first, correctly) or using

the external IV zt. Our results consider impulse responses out to horizon 10 or 20 (i.e.,

k = 11 or k = 21 parameters of interest, as the impact response is also included). We

consider confidence levels 1−α ∈ {68%, 90%} and sample sizes T ∈ {200, 500}. We compute

pointwise, Šidák, Bonferroni, µ-projection (the asymptotic approximation B̂(χp,1−α)), and

θ-projection bands. We also compute the plug-in sup-t band, the homoskedastic residual

bootstrap sup-t band, and the maximally diffuse normal-inverse-Wishart Bayes band. We
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run 2,000 Monte Carlo replications per data generating process. The plug-in sup-t band uses

100,000 normal draws, while the bootstrap and Bayes sup-t bands each use 2,000 draws.

Results. Tables 2 and 3 display the simulated finite-sample simultaneous coverage prob-

ability and expected sum of component widths for the confidence bands in Sections 2 and 3.

The plug-in, bootstrap, and Bayes sup-t bands all perform similarly well for moderately

persistent VAR processes (ϕ ∈ {0, 0.5}). For highly persistent VARs (ϕ ∈ {0.9, 1}), only the

Bayesian band exhibits satisfactory coverage, which comes at the expense of slightly larger

width. Šidák and Bonferroni bands have coverage rates that are comparable to the Bayesian

band for confidence level 1− α = 0.90, but they are very conservative at 1− α = 0.68. The

Šidák and Bonferroni bands tend to be 10–20% wider than the sup-t bands at confidence

level 1− α = 0.90, and 30–35% wider at 1− α = 0.68. For most data generating processes,

the projection bands are highly conservative and on average 60–120% wider than the sup-t

bands. In the case of external instrument identification, a sample size of T = 500 is required

for reasonable coverage of the plug-in and bootstrap sup-t bands.

We conclude that the Bayesian band possesses the best mix of coverage and width prop-

erties among the bands considered here. We caution, however, that the present simulation

study is of relatively small scale. It is plausible that the plug-in and bootstrap sup-t imple-

mentations can be improved using bias reduction techniques (Lütkepohl et al., 2015a, section

A.1) or modifications to the bootstrap procedure.
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VAR simulations: coverage probability
DGP Coverage: sup-t Coverage: other bands

τ ϕ R2 T Plu Boo Bay Pw Sid Bon θ-p µ-p

A. Recursive, 90% bands, max horizon 10
1 0.0 – 200 0.72 0.88 0.90 0.56 0.77 0.77 0.84 0.83
1 0.0 – 500 0.80 0.89 0.89 0.61 0.87 0.87 0.95 0.94
1 0.5 – 200 0.79 0.87 0.91 0.59 0.85 0.85 0.95 0.94
1 0.5 – 500 0.85 0.89 0.91 0.65 0.92 0.92 0.98 0.97
1 0.9 – 200 0.80 0.73 0.88 0.61 0.88 0.89 0.97 0.97
1 0.9 – 500 0.87 0.84 0.89 0.68 0.93 0.94 1.00 0.99
1 1.0 – 200 0.63 0.38 0.76 0.41 0.77 0.77 0.96 0.94
1 1.0 – 500 0.73 0.55 0.79 0.52 0.85 0.85 0.99 0.98
4 0.5 – 200 0.80 0.74 0.87 0.50 0.85 0.86 0.99 1.00
4 0.5 – 500 0.88 0.85 0.90 0.58 0.93 0.93 1.00 1.00
4 0.9 – 200 0.79 0.71 0.86 0.53 0.86 0.86 0.98 0.99
4 0.9 – 500 0.86 0.82 0.88 0.60 0.91 0.91 0.99 1.00
4 1.0 – 200 0.69 0.55 0.81 0.43 0.77 0.77 0.96 0.99
4 1.0 – 500 0.82 0.76 0.87 0.56 0.89 0.89 0.99 1.00

B. Recursive, 68% bands, max horizon 10
1 0.9 – 200 0.59 0.51 0.65 0.25 0.79 0.81 0.96 0.95
1 0.9 – 500 0.66 0.60 0.69 0.27 0.85 0.87 0.99 0.98

C. Recursive, 90% bands, max horizon 20
1 0.9 – 200 0.74 0.74 0.89 0.55 0.83 0.83 0.94 0.90
1 0.9 – 500 0.83 0.83 0.90 0.64 0.92 0.92 0.99 0.97

D. External IV, 90% bands, max horizon 10
1 0.5 0.1 200 0.76 0.83 – 0.59 0.83 0.83 0.93 0.93
1 0.5 0.1 500 0.84 0.88 – 0.66 0.91 0.91 0.98 0.98
1 0.9 0.1 200 0.77 0.70 – 0.60 0.86 0.86 0.97 0.97
1 0.9 0.1 500 0.84 0.82 – 0.66 0.93 0.93 0.99 0.99
1 0.5 0.5 200 0.80 0.87 – 0.63 0.85 0.86 0.95 0.95
1 0.5 0.5 500 0.84 0.88 – 0.67 0.91 0.91 0.98 0.98
1 0.9 0.5 200 0.81 0.74 – 0.61 0.90 0.90 0.98 0.98
1 0.9 0.5 500 0.86 0.83 – 0.67 0.93 0.93 1.00 1.00

Table 2: Simultaneous coverage probability of confidence bands in Monte Carlo study of VAR
impulse response functions. First 4 columns: DGP parameters. Last 8 columns: simultaneous cov-
erage rate of confidence bands (respectively: plug-in sup-t, bootstrap sup-t, Bayes sup-t, pointwise,
Šidák, Bonferroni, θ-projection, µ-projection).
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VAR simulations: average width relative to pointwise band
DGP Rel. width: sup-t Rel. width: other bands

τ ϕ R2 T Plu Boo Bay Sid Bon θ-p µ-p

A. Recursive, 90% bands, max horizon 10
1 0.0 – 200 1.34 1.36 1.48 1.58 1.59 2.53 2.33
1 0.0 – 500 1.33 1.34 1.39 1.58 1.59 2.53 2.33
1 0.5 – 200 1.35 1.34 1.49 1.58 1.59 2.53 2.33
1 0.5 – 500 1.35 1.35 1.41 1.58 1.59 2.53 2.33
1 0.9 – 200 1.32 1.31 1.40 1.58 1.59 2.53 2.33
1 0.9 – 500 1.32 1.33 1.35 1.58 1.59 2.53 2.33
1 1.0 – 200 1.31 1.46 1.37 1.58 1.59 2.53 2.33
1 1.0 – 500 1.30 1.44 1.33 1.58 1.59 2.53 2.33
4 0.5 – 200 1.43 1.40 1.55 1.58 1.59 2.53 3.31
4 0.5 – 500 1.42 1.41 1.47 1.58 1.59 2.53 3.31
4 0.9 – 200 1.39 1.41 1.49 1.58 1.59 2.53 3.31
4 0.9 – 500 1.39 1.40 1.43 1.58 1.59 2.53 3.31
4 1.0 – 200 1.38 1.39 1.46 1.58 1.59 2.53 3.31
4 1.0 – 500 1.38 1.39 1.41 1.58 1.59 2.53 3.31

B. Recursive, 68% bands, max horizon 10
1 0.9 – 200 1.60 1.60 1.65 2.13 2.19 3.57 3.24
1 0.9 – 500 1.60 1.61 1.62 2.13 2.19 3.57 3.24

C. Recursive, 90% bands, max horizon 20
1 0.9 – 200 1.34 1.23 1.54 1.71 1.72 3.31 2.33
1 0.9 – 500 1.34 1.29 1.41 1.71 1.72 3.31 2.33

D. External IV, 90% bands, max horizon 10
1 0.5 0.1 200 1.34 1.34 – 1.58 1.59 2.53 2.53
1 0.5 0.1 500 1.33 1.34 – 1.58 1.59 2.53 2.53
1 0.9 0.1 200 1.31 1.31 – 1.58 1.59 2.53 2.53
1 0.9 0.1 500 1.31 1.32 – 1.58 1.59 2.53 2.53
1 0.5 0.5 200 1.35 1.34 – 1.58 1.59 2.53 2.53
1 0.5 0.5 500 1.35 1.35 – 1.58 1.59 2.53 2.53
1 0.9 0.5 200 1.32 1.31 – 1.58 1.59 2.53 2.53
1 0.9 0.5 500 1.32 1.32 – 1.58 1.59 2.53 2.53

Table 3: Average width of confidence bands in Monte Carlo study of VAR impulse response
functions. First 4 columns: DGP parameters. Last 7 columns: average sum of component widths
of band, divided by same quantity for pointwise band. See abbreviations in caption for Table 2.
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A.6 Application: Sensitivity analysis

Here we use a simultaneous confidence band to visualize the joint uncertainty of a linear

regression coefficient estimated using different sets of control variables. The simultaneous

nature of the band allows comparisons across specifications, in contrast to the common

approach of reporting confidence intervals separately for each specification. Our application

follows Head et al. (2010) in estimating the effects of gaining political independence on

bilateral trade between a former colony and its metropole. We show that the effect on

trade 40 years after independence is sensitive to controlling for population and economic

development, as economic theory predicts. However, the result is insensitive to controlling

for trade agreements and common currency, language, or legal system.

The sup-t band is more attractive for sensitivity analysis than the Bonferroni method,

since the point estimators in different specifications will typically be highly correlated. Al-

though we focus here on linear regression, the same method can be applied to sensitivity

analysis in many other types of identified economic models. While we have not seen the sup-t

band used for visualizing sensitivity analysis before, Berk et al. (2013) and Leeb et al. (2015)

analyze the sup-t band as a means for performing valid post-model-selection inference.10

Specification. Head et al. (2010) find that bilateral trade between a former colony and

its metropole decreases dramatically following independence. They estimate that the full,

permanent effect of the separation on trade occurs about 40 years out. Their annual panel

data set is based on the International Monetary Fund’s Direction of Trade Statistics as well

as various data sources for colonial relationships, macroeconomic indicators, trade agree-

ments, etc.11 We use the sample for the main linear regression specification in Head et al.

10Several authors have considered the related issue of adjusting tests to account for “data snooping”, e.g.,
Andrews (1993), Inoue & Kilian (2005), Hansen & Timmermann (2012), and Armstrong & Kolesár (2016).

11See Head et al. (2010) for details. We thank Keith Head for making code and data available online.
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(2010). The number of dyads (country pairs) is 27,303, while the total number of dyad-year

observations is 592,923.

Our parameter of interest is the effect of independence on bilateral trade 40 years after

the event. For ease of exposition, we employ the OLS specification of Head et al. (2010) (their

results are robust across several other specifications). The regressions include dummies for

colonial history and ongoing colonial relationship, as well as dummies for number of years

after independence. We focus on the linear projection coefficient on the dummy for 40 years

after independence. We consider five different sets of control variables, as described below.12

All specifications control for time fixed effects. Standard errors, bootstraps replications, and

Bayesian inference are clustered by dyad.13

Results. Figure 8 exhibits plug-in, bootstrap, and Bayesian sup-t bands for the 40-year

effect of independence estimated across five different sets of control variables. The set of

controls expands when moving from left to right; the fifth specification corresponds to the

preferred OLS specification of Head et al. (2010). The simultaneous confidence bands allow

the audience to make comparisons across specifications. As expected, the sup-t bands are

only about 20% wider than the pointwise band (which does not permit comparison across

specifications). In contrast, the Bonferroni band (not shown) is 41% wider than the pointwise

band. The three versions of the sup-t band are almost equally wide, but the bootstrap and

Bayes bands are shifted slightly upward relative to the plug-in band.

Figure 8 illustrates how the sup-t band can visually communicate which features of the

specification are important for the final result, while permitting valid statistical comparisons

12As emphasized by Leeb et al. (2015, Remark 2.1(i)), the five estimated coefficients correspond to different
linear projections and should not be interpreted as five different estimates of the same parameter in some
encompassing model (e.g., the largest model).

13We perform Bayesian analysis using the Bayesian bootstrap of Rubin (1981) and Chamberlain & Imbens
(2003), a multiplier bootstrap with standard exponential weights. We perform 2,000 multinomial bootstrap
and Bayesian bootstrap replications. The variance-covariance matrix for the plug-in band is computed by
stacking the scores of the individual regression specifications and imposing independence across clusters.
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Sensitivity analysis confidence bands: sup-t implementations
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Figure 8: 90% confidence bands for the linear regression coefficient measuring the 40-year effect of
independence on log bilateral trade, estimated across five different sets of controls. Crosses: point
estimates. Lines: confidence bands. Specifications: “colonial” – colonial history dummy, ongoing
colonial relationship dummy, years after independence dummies; “+gravity” – adds log population
and log GDP per capita in origin and destination, log distance between origin and destination,
shared border dummy; “+language/legal” – further adds dummies for common language and legal
system; “+currency” – further adds dummy for common currency; “+trade agreem” – further adds
dummies for trade agreements. All specifications include time fixed effects. Cluster variable: dyad.

across specifications. In particular, the bands show that it is crucial to control for post-

independence developments in population and GDP per capita, just as economic theory

would predict, and as discussed by Head et al. (2010). The first regression specification only

uses colonial dummies and years after independence dummies, so it essentially corresponds to

an event study comparing colonies that gain independence with colonies that do not. In this

specification, the 40-year independence effect on trade is positive. The second specification

adds traditional “gravity equation” control variables: population and GDP per capita in

origin and destination, distance between origin and destination, and a dummy variable for

shared border. The plot clearly shows that these particular control variables are driving the
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highly negative estimated 40-year effect of independence; the point estimate of −1.25 log

points corresponds to a 72% reduction in trade. Based on the sup-t bands, the difference

between the first and second specifications is statistically significant. However, the remaining

three specifications do not yield significantly different results from the second specification.
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A.7 Proofs

Let ‖ · ‖ and ‖ · ‖∞ denote the Euclidean and maximum norms, respectively.

A.7.1 Lemma 1

For each j = 1, . . . , k, define d̂j ≡ b̂j−âj
2 and êj ≡

√
n(âj+b̂j)

2c . Note that d̂ = (d̂1, . . . , d̂k)′ =

op(n−1/2) and ê = (ê1, . . . , êk)′ = op(1). Define also σ̂ ≡ (σ̂1, . . . , σ̂k)′. For any vector x ∈ Rk,

let diag(x) denote the k × k diagonal matrix with the elements of x in order along the

diagonal. Then, for any c > 0,

P
(
θ ∈ B̂(c)

)
= P

(
‖ diag(

√
nσ̂ + ê)−1√n(θ̂ − θ + d̂)‖∞ ≤ c

)
= P

(
‖ diag(

√
nσ̂ + op(1))−1(

√
n(θ̂ − θ) + op(1))‖∞ ≤ c

)
.

The proposition now follows from the limiting distribution (4) of θ̂, the continuous mapping

theorem, and the Portmanteau lemma. To apply the latter, we need to show that the

probability measure of maxj |Σ−1/2
jj Vj|, where V ∼ Nk(0k,Σ), is dominated by Lebesgue

measure. This follows from the fact that P (maxj=1,...,kXj ∈ A) ≤ ∑k
j=1 P (Xj ∈ A) = 0 for

any collection {Xj}j=1,...,k of scalar random variables and any Lebesgue null set A.

A.7.2 Lemma 2

Given any Σ̃ ∈ Sp,k, if we let Ṽ = (Ṽ1, . . . , Ṽk)′ ∼ Nk(0k, Σ̃), then

ζ = P
(

max
j
|Σ̃−1/2

jj Ṽj| ≤ qζ(Σ̃)
)
≤ P (|Σ̃−1/2

11 Ṽ1| ≤ qζ(Σ̃)) = P (χ2(1) ≤ q2
ζ (Σ̃)),

so

inf
Σ̃∈Sp,k

q2
ζ (Σ̃) ≥ χ2

ζ .
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On the other hand, let G∗ ≡ (g∗, . . . , g∗)′ ∈ Rk×p, where g∗ ∈ Rp is any vector satisfying

‖g∗‖ = 1, and define Σ∗ ≡ G∗(G∗)′ ∈ Sp,k. Note that Σ∗jj = 1 for all j. Then

inf
Σ̃∈Sp,k

qζ(Σ̃) ≤ qζ(Σ∗) = χζ ,

since

ζ = P (|(g∗)′Z| ≤ χζ) = P (‖G∗Z‖∞ ≤ χζ) = P (‖Nk(0k,Σ∗)‖∞ ≤ χζ).

The inequality for the supremum in the lemma is a consequence of the Šidák (1967) inequality.

Finally, if k ≤ p, then Ik ∈ Sp,k, so supΣ̃∈Sp,k qζ(Σ̃) ≥ qζ(Ik) = χζ1/k .

A.7.3 Lemma 3

Given Σ̃ ∈ Sp,k and Ṽ ∼ Nk(0k, Σ̃), we can write Ṽ ∼ G̃Z, where Z ∼ Np(0p, Ip), and

G̃ = (g̃1, . . . , g̃k)′ satisfies G̃G̃′ = Σ̃ and thus ‖g̃j‖2 = Σ̃jj for all j. Hence, the first statement

of the lemma (a standard projection result) follows from Šidák (1967)’s inequality and

max
j
|Σ̃−1/2

jj Ṽj| = max
j
‖g̃j‖−1|g̃′jZ| ≤ max

j
‖g̃j‖−1‖g̃j‖‖Z‖ = ‖Z‖ ∼

√
χ2(p).

Now consider the second statement. That the supremum is strictly smaller than χp,ζ follows

from the above display and the fact that the event {Z ∝ g̃j} has probability zero for any

vector g̃j ∈ Rp (when p ≥ 2). To show the strict lower bound on the supremum, consider the

particular k×p matrix G∗ ≡ (Ip, ι/
√
p, . . . , ι/

√
p)′, where ι ≡ (1, . . . , 1)′. Then Σ∗ ≡ G∗(G∗)′

satisfies Σ∗jj = 1 for all j. If we let Z ∼ Np(0p, Ip), then

P (‖Nk(0k,Σ∗)‖∞ ≤ χζ1/p) = P (‖G∗Z‖∞ ≤ χζ1/p)

= P (‖Z‖∞ ≤ χζ1/p)P
(
|ι′Z|/√p ≤ χζ1/p

∣∣∣ ‖Z‖∞ ≤ χζ1/p

)
= ζ

{
1− P

(
|ι′Z| > √pχζ1/p

∣∣∣ ‖Z‖∞ ≤ χζ1/p

)}
.
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The lemma follows if we show that

P
(
|ι′Z| > √pχζ1/p , ‖Z‖∞ ≤ χζ1/p

)
> 0.

Let ε > 0 satisfy p(χζ1/p − ε) > √pχζ1/p ; such an ε exists because p ≥ 2. Then

P
(
|ι′Z| > √pχζ1/p , ‖Z‖∞ ≤ χζ1/p

)
≥ P

(
|ι′Z| > √pχζ1/p , ‖Z‖∞ ≤ χζ1/p , min

j
Zj ≥ χζ1/p − ε

)
≥ P

(
p(χζ1/p − ε) >

√
pχζ1/p , ‖Z‖∞ ≤ χζ1/p , min

j
Zj ≥ χζ1/p − ε

)
= P

(
‖Z‖∞ ≤ χζ1/p , min

j
Zj ≥ χζ1/p − ε

)
> 0.

A.7.4 Lemma 4

Let U = (U1, . . . , Uk)′ ∼ Nk(0k, Ik).

(i): The statement is equivalent with log(1−( 1
k
α+ k−1

k
×0)) > 1

k
log(1−α)+ k−1

k
log(1−0).

This is Jensen’s inequality applied to the concave function x 7→ log(1− x).

(ii): This standard projection bias result follows from ‖U‖2
∞ ≤ ‖U‖2 ∼ χ2(k). Note that

χ2
(1−α)1/k is the 1− α quantile of ‖U‖2

∞.

(iii): By Giné & Nickl (2016, Lemmas 2.3.4 and 2.4.11), there exists ε > 0 such that

ε
√

log k ≤ E‖U‖∞ ≤
√

2 log 2k.
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Hence, using Giné & Nickl (2016, Theorem 2.5.8),

P
(
‖U‖∞ ≥

√
2 log 2k +

√
−2 logα

)
≤ P

(
‖U‖∞ ≥ E‖U‖∞ +

√
−2 logα

)
≤ α,

so χ(1−α)1/k ≤
√

2 log 2k +
√
−2 logα. Similarly, Giné & Nickl (2016, Theorem 2.5.8) yields

P
(
‖U‖∞ ≤ ε

√
log k −

√
−2 log(1− α)

)
≤ P

(
‖U‖∞ ≤ E‖U‖∞ −

√
−2 log(1− α)

)
≤ 1− α,

so χ(1−α)1/k ≥ ε
√

log k −
√
−2 log(1− α).

A.7.5 Lemma 5

Let Σ̃ ∈ Sp,k. We want to show qζ(Σ̃(`)) → qζ(Σ̃) as ` → ∞ for any sequence {Σ̃(`)} ∈ Sp,k

tending to Σ̃ as `→∞.

First we argue that the distribution Nk(0k, Σ̃(`)) converges weakly to Nk(0k, Σ̃) as `→∞.

This statement is obvious if k = 1. It then follows for general k by the Cramér-Wold device.

Now let Ṽ ∼ Nk(0k, Σ̃) as well as Ṽ (`) ∼ Nk(0k, Σ̃(`)) for all `. By the continuous

mapping theorem, Σ̃jj > 0, and the above paragraph, the distribution of maxj |(Σ̃(`)
jj )−1/2Ṽ

(`)
jj |

converges weakly to the distribution maxj |Σ̃−1/2
jj Ṽjj| as `→∞.

The statement of the lemma now follows from van der Vaart (1998, Lemma 21.2) if we

show that the distribution of maxj |Σ̃−1/2
jj Ṽjj| is absolutely continuous on R+. Represent

this distribution as the distribution of ‖GZ‖∞ where G ∈ Rk×p and Z ∼ Np(0p, Ip). We

showed that the probability measure of ‖GZ‖∞ is dominated by Lebesgue measure in the

proof of Lemma 1. Now take an arbitrary non-empty interval (a, b), 0 ≤ a < b. Denote

elements of G by gj`. We may assume the first column of G is not identically zero. Select

j∗ ∈ argmaxj |gj1|. Let e1 denote the first p-dimensional unit vector. Then ‖Gz∗‖∞ = a+b
2
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for z∗ ≡ a+b
2gj∗1

e1, so there exists a neighborhood S of z∗ in Rp such that ‖Gz‖∞ ∈ (a, b) for

all z ∈ S. Then P (‖GZ‖∞ ∈ (a, b)) > P (Z ∈ S) > 0.

A.7.6 Lemma 6

If C ∈ Ceq, then C(x+ λ) = Gλ+ C(x) for any x, λ ∈ Rp. Hence, for any x ∈ Rp,

C(x) = C(0p + x) = Gx+ C(0p).

The lemma follows by setting R = C(0p) ∈ R.

A.7.7 Proposition 1

We need an auxiliary lemma. It states that the coordinate-wise width of any translation

equivariant confidence band of confidence level 1−α is bounded from below by the coordinate-

wise width of the band that has pointwise confidence level 1− α. A similar result is stated

by Piegorsch (1984, p. 15). To remind the reader of our notation: Rj denotes the interval

[aj, bj] (where bj > aj) and R =×k
j=1Rj. Moreover, g′j is the j-th row of G ∈ Rk×p.

Lemma 7. Let C(x) = Gx+R ∈ C1−α ∩ Ceq. Then bj − aj ≥ 2‖gj‖χ1−α for j = 1, . . . , k.

Proof. Let Z ∼ Np(0p, Ip). For any j = 1, . . . , k,

Pµ(Gµ ∈ C(x)) = P (GZ ∈ R1 × · · · ×Rk)

(by the translation equivariance of C(x))

≤ P (g′jZ ∈ [aj, bj])

(by the monotonicity of probability)

≤ P (g′jZ ∈ [−(bj − aj)/2, (bj − aj)/2])

(by Anderson’s lemma)
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= P ( |N1(0, 1)| ≤ (bj − aj)/(2‖gj‖)).

Since C(x) has confidence level 1− α, we have that the right-hand side of the last equation

is greater than or equal 1− α. This can only happen if (bj − aj)/(2‖gj‖) ≥ χ1−α. Note that

the second inequality in the above display applies Anderson’s lemma.14

The proof of Proposition 1 proceeds in three steps.

Step 1: We first upper-bound the worst-case regret of the sup-t band. Define σ ≡

(‖g1‖, . . . , ‖gk‖)′. For any L ∈ LH , Lemma 7 implies that

L(Rsup)
infR̃∈R1−α

L(R̃)
≤ L(Rsup)

L(2σχ1−α)
(by Lemma 7 and the monotonicity of L)

= L(2σq1−α(GG′))
L(2σχ1−α)

(by definition of the sup-t band)

= 2q1−α(GG′)L(σ)
2χ1−αL(σ)

(by homogeneity of degree 1 of L)

= q1−α(GG′)
χ1−α

.

Consequently, Step 1 shows that the worst-case relative regret of the sup-t band is no larger

than the ratio of the sup-t critical value and the point-wise critical value:

sup
L∈LH

L(Rsup)
infR̃∈R1−α

L(R̃)
≤ q1−α(GG′)

χ1−α
.

14https://en.wikipedia.org/wiki/Anderson%27s_theorem
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Step 2: We now find a lower bound on the worst-case regret of an arbitrary rectangle

R = ×k
j=1Rj ∈ R1−α. Fix R and let j∗R ∈ argmaxj=1,...,k(bj − aj)/‖gj‖. Thus, j∗R is the

coordinate at which band R has the largest width relative to the pointwise standard error.

Consider now the loss function given by L∗R(r) ≡ rj∗
R
for all r = (r1, . . . , rk)′ ∈ Rk

+. We make

three observations: i) this loss function reports, for any vector (r1, r2, . . . , rk)′, the width

corresponding to the j∗R-th entry; ii) L∗R ∈ LH ; and iii):

inf
R̃∈R1−α

L∗R(R̃) = 2‖gj∗
R
‖χ1−α,

where the infimum is achieved by the sequence of bands that equal the Wald interval g′jx±

‖gj‖(χ1−α + εn) at coordinate j∗R (with εn → 0) and have interval endpoints tending to

plus/minus infinity at all other components. Thus, the worst-case relative regret of any

band R =×k
j=1[aj, bj] is bounded below by:

sup
L∈LH

L(R)
infR̃∈C1−α

L(R̃)
≥ L∗R(R)

infR̃∈R1−α
L∗R(R̃)

=
bj∗
R
− aj∗

R

2‖gj∗
R
‖χ1−α

= 1
2χ1−α

max
j=1,...,k

bj − aj
‖gj‖

.

Step 3: Applying Step 2 toR = Rsup, the far right-hand side above equals q1−α(GG′)/χ1−α.

Therefore, Step 1 and 2 imply that

sup
L∈LH

L(Rsup)
infR̃∈R1−α

L(R̃)
= q1−α(GG′)

χ1−α
.

Hence, it now suffices to show that R = ×k
j=1[aj, bj] 6= Rsup implies maxj(bj − aj)/‖gj‖ >

2q1−α(GG′). Suppose to the contrary that there existed a rectangle R ∈ R1−α such that

bj − aj ≤ 2‖gj‖q1−α(GG′) for all j, with strict inequality for at least one j. This contradicts

the tautness of the sup-t band (Freyberger & Rai, 2017, Corollary 1). Hence, we conclude
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that for, any R ∈ R1−α,

sup
L∈LH

L(R)
infR̃∈R1−α

L(R̃)
≥ q1−α(GG′)

χ1−α
,

with strict inequality for any R 6= Rsup.

A.7.8 Proposition 2

Fix j = 1, . . . , k. Continuous differentiability of h(·) at µ implies h(µ̃)− h(µ) = ḣj(µ)′(µ̃−

µ) + o(‖µ̃− µ‖) as ‖µ̃− µ‖ → 0. Hence, for any µ̃ ∈ Ŵµ,

hj(µ̃) = hj(µ̂) + hj(µ̃)− hj(µ)− [hj(µ̂)− hj(µ)]

= hj(µ̂) + ḣj(µ)′(µ̃− µ)− ḣj(µ)′(µ̂− µ) + o(‖µ̃− µ‖) + op(‖µ̂− µ‖)

= hj(µ̂) + ḣj(µ)′(µ̃− µ̂) + op(n−1/2) (uniformly in µ̃),

where the last line uses ‖µ̂ − µ‖ = Op(n−1/2)—by Assumption 1(ii)—and ‖µ̃ − µ‖ ≤ ‖µ̂ −

µ‖+ ‖µ̂− µ̃‖ ≤ ‖µ̂− µ‖+ ‖Ω̂1/2‖‖Ω̂−1/2(µ̂− µ̃)‖ = Op(n−1/2) uniformly for µ̃ ∈ Ŵµ. Thus,

sup
µ̃∈Ŵµ

hj(µ̃) = hj(µ̂) + sup
µ̃∈Ŵµ

ḣj(µ)′(µ̃− µ̂) + op(n−1/2)

= hj(µ̂) + χp,1−α√
n
‖Ω̂1/2ḣj(µ)‖+ op(n−1/2)

= θ̂j + χp,1−ασ̂j + op(n−1/2).

The second equality above follows from the Cauchy-Schwarz inequality and the fact thatM

contains a neighborhood of µ, which implies P ({µ̃ ∈ Rp | ‖Ω̂−1/2(µ̃ − µ̂)‖ = χp,1−α/
√
n} ⊂

Ŵµ)→ 1. The result for the infimum follows by substituting −h(·) for h(·).
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A.7.9 Proposition 3

(i): Let {n`} be an arbitrary subsequence of {n}. We need to show that there exists a

further subsequence along which q̂1−α
a.s.→ q1−α(Σ). By assumption, ρ(P̂M , PM) p→ 0, θ̂ p→ θ,

and
√
nσ̂∗j

p→ Σ1/2
jj (for all j) along the subsequence {n`}. Thus, we can extract a further

subsequence {nm} of {n`} such that ρ(P̂M , PM) a.s.→ 0, θ̂ a.s.→ θ, and
√
nσ̂∗j

a.s.→ Σ1/2
jj (for all j)

along {nm}. All remaining asymptotic statements in the proof of part (i) are implicitly with

respect to this subsequence {nm}.

Since P̂M converges weakly to PM , almost surely, the continuous differentiability of h(·)

and the delta method imply that the conditional distribution of
√
n(hj(µ̂∗)−hj(µ̂)) converges

weakly to the distribution of V ∼ Nk(0k,Σ), conditionally almost surely (cf. the proof of

van der Vaart, 1998, Thm. 23.5). The continuous mapping theorem then implies that the

conditional distribution of maxj(σ̂∗j )−1|hj(µ̂∗) − hj(µ̂)| converges weakly to the distribution

of maxj |Σ−1/2
jj Vj|, where again V ∼ Nk(0k,Σ), almost surely. Almost sure convergence of

the 1− α quantile follows as in the proof of Lemma 5.

(ii): By Assumption 1,
√
nσ̂j

p→ Σ1/2
jj . As above, given a subsequence of {n}, extract a

further subsequence along which ρ(P̂M , PM) a.s.→ 0, θ̂ a.s.→ θ, and
√
nσ̂j

a.s.→ Σ1/2
jj (for all j). We

need to show

ζ̂
a.s.→ ζ∗ ≡ Φ(−q1−α(Σ))

along this latter subsequence. Except where noted, all asymptotic statements in the rest of

the proof are with respect to this subsequence.

For each j, let Q̂V
j,ζ denote the ζ quantile of the distribution of

√
n(hj(µ̂∗) − hj(µ̂)),

conditional on the data. By the monotone transformation preservation property of quantiles,

we have Q̂V
j,ζ =

√
n(Q̂j,ζ− θ̂j) for all j and ζ. As in part (i) above, the conditional distribution

of
√
n(hj(µ̂∗)− hj(µ̂)) converges weakly to the distribution of V ∼ Nk(0k,Σ), almost surely.
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Thus, Q̂V
j,ζ

a.s.→ Σ1/2
jj Φ−1(ζ), almost surely, for any j and ζ.

We first show lim inf ζ̂ ≥ ζ∗, almost surely. Suppose to the contrary that for some

ε > 0, we have ζ̂ < ζ∗ − ε along some (further) subsequence {ñ`}, with positive proba-

bility. Choose δ > 0 and α̃ ∈ (0, α) so that Σ1/2
jj Φ−1(ζ∗ − ε) + δ = −Σ1/2

jj q1−α̃(Σ). By

the argument in the previous paragraph, there exists an event E with probability 1 such

that Q̂V
j,ζ∗−ε < Σ1/2

jj Φ−1(ζ∗ − ε) + δ and Q̂V
j,1−(ζ∗−ε) > Σ1/2

jj Φ−1(1 − (ζ∗ − ε)) − δ for all

j, when sufficiently far along {ñ`}. Since ζ̂ is defined as the largest value of ζ such that

P̂ (h(µ̂∗) ∈ ×k
j=1[Q̂j,ζ , Q̂j,1−ζ ]) ≥ 1− α, we have that

ζ̂ < ζ∗ − ε

implies

P̂
(
h(µ̂∗) ∈ ×k

j=1[Q̂j,ζ∗−ε, Q̂j,1−(ζ∗−ε)]
)
< 1− α,

which is equivalent with

P̂
(√

n(h(µ̂∗)− h(µ̂)) ∈ ×k
j=1[Q̂V

j,ζ∗−ε, Q̂
V
j,1−(ζ∗−ε)]

)
< 1− α,

which on the event E further implies

P̂
(√

n(h(µ̂∗)− h(µ̂)) ∈ ×k
j=1[Σ1/2

jj Φ−1(ζ∗ − ε) + δ,Σ1/2
jj Φ−1(1− (ζ∗ − ε))− δ]

)
< 1− α

when sufficiently far along {ñ`}, or equivalently,

P̂
(√

n(h(µ̂∗)− h(µ̂)) ∈ ×k
j=1[−Σ1/2

jj q1−α̃(Σ),Σ1/2
jj q1−α̃(Σ)]

)
< 1− α,
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or equivalently

P̂
(

max
j

Σ−1/2
jj

√
n|hj(µ̂∗)− hj(µ̂)| ≤ q1−α̃(Σ)

)
< 1− α,

or equivalently

P̂
(

max
j

Σ−1/2
jj

√
n|hj(µ̂∗)− hj(µ̂)| ≤ q1−α̃(Σ)

)
− (1− α̃) < α̃− α.

However, while the right-hand side above is strictly negative, the left-hand side tends to zero

along {ñ`} almost surely by the above-mentioned weak convergence of
√
n(hj(µ̂∗)− hj(µ̂)),

the continuous mapping theorem, and Equation (6). We have arrived at a contradiction,

and thus conclude that lim inf ζ̂ ≥ ζ∗ almost surely.

We similarly show that lim sup ζ̂ ≤ ζ∗, almost surely. Suppose to the contrary that

for some ε > 0, we have ζ̂ > ζ∗ + ε along some (further) subsequence {ñ`}, with positive

probability. By monotonicity of quantiles in ζ,

ζ̂ > ζ∗ + ε and P̂
(
h(µ̂∗) ∈ ×k

j=1[Q̂j,ζ̂ , Q̂j,1−ζ̂ ]
)
≥ 1− α

imply

P̂
(
h(µ̂∗) ∈ ×k

j=1[Q̂j,ζ∗+ε, Q̂j,1−(ζ∗+ε)]
)
≥ 1− α.

We can now apply analogous arguments to the previous paragraph to ultimately show that

the event that the above inequality holds along {ñ`} must have probability zero.

(iii): Continue with the subsequence chosen at the beginning of part (ii). It suffices to

show that
√
n(Q̂j,ζ̂ − θ̂j)

a.s.→ −Σ1/2
jj q1−α(Σ) (1)
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along this subsequence (the argument for Q̂j,1−ζ̂ follows the same way).

Let ε > 0 be arbitrary. Let δ > 0 satisfy Φ−1(ζ∗ + δ) − Φ−1(ζ∗ − δ) = Σ−1/2
jj ε/2. Part

(ii) implies |ζ̂ − ζ∗| < δ and Q̂V
j,ζ∗+δ > Σ1/2

jj Φ−1(ζ∗) > Q̂V
j,ζ∗−δ when sufficiently far along the

subsequence, almost surely. Thus,

∣∣∣√n(Q̂j,ζ̂ − θ̂j) + Σ1/2
jj q1−α(Σ)

∣∣∣
=
∣∣∣Q̂V

j,ζ̂
− Σ1/2

jj Φ−1(ζ∗)
∣∣∣

≤
(
Q̂V
j,ζ∗+δ − Σ1/2

jj Φ−1(ζ∗)
)

+
(
Σ1/2
jj Φ−1(ζ∗)− Q̂V

j,ζ∗−δ

)
=
(
Q̂V
j,ζ∗+δ − Σ1/2

jj Φ−1(ζ∗ + δ)
)

+
(
Σ1/2
jj Φ−1(ζ∗ − δ)− Q̂V

j,ζ∗−δ

)
+ Σ1/2

jj

(
Φ−1(ζ∗ + δ)− Φ−1(ζ∗ − δ)

)
=
(
Q̂V
j,ζ∗+δ − Σ1/2

jj Φ−1(ζ∗ + δ)
)

+
(
Σ1/2
jj Φ−1(ζ∗ − δ)− Q̂V

j,ζ∗−δ

)
+ ε

2 ,

when sufficiently far along the subsequence, almost surely (the inequality above uses mono-

tonicity of quantiles in ζ). By the argument in part (ii), the far right-hand side of the above

display is less than ε when sufficiently far along the subsequence, almost surely. Since ε > 0

was arbitrary, we have shown (1).
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