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Abstract
A promise of representation learning—an active
research area in machine learning—is that algo-
rithms will, one day, learn to extract the most use-
ful information from modern data sources, such as
videos, images, or text. In this work, we analyze
recent theoretical developments in the representa-
tion learning literature through the lens of a linear
Gaussian factor model. First, we derive sufficient
representations—defined as functions of covari-
ates that, upon conditioning, render the outcome
variable and covariates independent. Then, we
study the theoretical properties of these represen-
tations and establish their asymptotic invariance;
which means the dependence of the representa-
tions on the factors’ measurement error vanishes
as the dimension of the covariates goes to infinity.
Finally, we use a decision-theoretic approach to
understand the extent to which representations are
useful for solving downstream tasks. We show
that the conditional mean of the outcome variable
given covariates is an asymptotically invariant and
sufficient representation that can solve any task
efficiently, not only prediction

1. Introduction
Representation Learning is an active research area in ma-
chine learning, see Bengio et al. (2013) for a highly cited
review. A key promise in this literature is the construction
of algorithms that are less dependent on feature engineering
and specific domain knowledge, thereby reducing the costs
of data preprocessing.

In this work, we study representations in the context of a lin-
ear Gaussian factor model, where a scalar response variable,
yi, and vector-valued covariates, xi ∈ Rk, are assumed to
be both linear functions of normally distributed errors and
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latent factors of lower dimension (zi ∈ Rd, d < k). Our
motivation is to analyze recent theoretical developments
in the representation learning literature—in particular, the
recent information-theoretic framework of Achille & Soatto
(2018).

Factor models (Lawley & Maxwell, 1962; 1973) provide
a natural laboratory for exploring representation learning,
as unobserved factors are, in some sense, a useful lower-
dimensional representation of observed data. We apply the
abstract definitions of representations and their properties
given by Achille & Soatto (2018) to understand what con-
stitutes a good representation in the linear Gaussian factor
model. The main results in the paper are as follows.

Sufficient Representations in the Linear Gaussian Factor
Model. Following the literature, define a representation z∗i to
be a possibly stochastic function of the covariate vector xi,
restricted to be independent of the outcome given covariates.
That is, z∗i ⊥yi|xi. The main idea behind this definition
is that a representation must be a transformation of only
covariates, and not the outcome variable.

We say that a representation is sufficient if conditioning
on it renders the response variable and the covariates inde-
pendent; i.e., yi⊥xi|z∗i . The idea here—as in the classical
definition of statistical sufficiency—is that a good represen-
tation extracts all relevant information about the covariates
(relative to the outcome variable distribution).

We first show in Part i) of Proposition 1 that the conditional
mean of zi given xi, and any orthogonal rotation of the usual
weighted least squares estimator (WLSE) of zi—treating the
factor loadings as known and using only the factor model
for the covariates xi—are sufficient representations. These
representations are all nonstochastic linear transformations
of covariates and achieve dimensionality reduction, as each
of these representations have dimension strictly less than k.
Although these representations are, to some extent, natural
(as they correspond to the typical estimators of the unob-
served factors), we show that the conditional mean of yi
given xi is a sufficient representation. We believe this is
an interesting result, as this scalar representation achieves a
further dimensionality reduction relative to the estimators
of the latent factors whenever d > 1.

Asymptotic Invariance of Sufficient Representations. In the
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factor model for xi, there is an error term—which affects
the observed covariates, but is independent of the outcome
variable—that we will call a nuisance. Following Achille &
Soatto (2018), we define a representation to be invariant if
the mutual information with the nuisance is zero. Invariance
is a desirable property because, intuitively, a random vari-
able that affects the covariates but not the outcome should
not be a part of a good representation.

Part ii) of Proposition 1 shows that the abovementioned rep-
resentations are not invariant. However, Part iii) of Proposi-
tion 1 shows that, as the dimension of the covariates goes to
infinity, the representations become asymptotically invari-
ant. Asymptotic invariance means that the mutual informa-
tion between the nuisance and the representation converges
to zero as k → ∞. Establishing this result requires some
standard regularity conditions on the factor’s model struc-
ture, similar to those in Bai & Ng (2006).

Maximally Insensitive Nonstochastic, Linear, and Sufficient
Representations. The definition of invariance motivates the
search for representations that minimize the mutual infor-
mation between the nuisance and representation. Achille &
Soatto (2018) referred to such representations as maximally
insensitive to the nuisance. Proposition 2 shows that the con-
ditional mean of yi given xi is maximally insensitive among
the class of nonstochastic linear sufficient representations.
Thus, from the perspective of sufficiency and invariance,
learning a good representation in the linear Gaussian factor
model is quite simple. If k is fixed, the conditional mean of
yi given xi is sufficient and maximally insensitive among
sufficient linear representations.

Representations for Solving Decision Problems. The repre-
sentation learning literature has also emphasized the need
for constructing representations that are useful for down-
stream tasks, such as prediction and classification. The hope
is to obtain a representation of covariates that can be used for
these and other purposes. Notably, separating the analysis
of features from the analysis of outcomes is quite common
in text data analysis, where, for instance, one can use vector
embeddings to represent words or sentences, before using
text for prediction or classification.

In this paper, we formalize the notion of a downstream task
using a decision-theoretic perspective. We posit an arbitrary
loss function (e.g., quadratic loss) involving the outcome
variable and an action that depends on observed covariates.
Then, we then study the extent to which a representation
is useful (or not) for solving a particular task. We formal-
ize this analysis by comparing the smallest expected loss
(risk) that would be achieved using all covariates versus the
smallest expected loss that would be achieved using only
the representation.

Proposition 3 shows that in the linear Gaussian factor model

the mean of yi|xi is—under conditions that we shall spell
out clearly—useful for solving any task. We believe this is
not an obvious result, as the conditional mean is typically
only optimal for prediction problems under squared loss.
Intuitively, we obtain our result by showing that in the linear
Gaussian factor model, the conditional mean of yi given xi

contains all information necessary to recover the conditional
distribution of yi|xi. Because the full conditional distribu-
tion is encoded in the representation, any task can be solved
optimally.

Representation Learning Beyond the Linear Gaussian Fac-
tor Model. Of course, factor models used in applied work
are more complicated than the simple linear Gaussian factor
model. Therefore, it is important to understand which of
the discussed representations would still be useful in a more
general model. To answer this question, we consider a mild
departure from the full Gaussian model, by allowing the
outcome variable to be a more complicated nonlinear func-
tion of factors, but maintaining the linear Gaussian factor
structure for covariates. We assume that yi|xi, zi, θ has a
distribution in the exponential family with parameters of the
form Ωθ(zi), where Ωθ(·) denotes a neural network. We
chose the model for covariates to remain a linear Gaussian
factor model. The main assumption here is that the outcome
and covariates are independent, conditional on the factors.

Our suggested framework relates to several existing models.
First, the nonparametric regression model based on deep
neural networks in Schmidt-Hieber (2020). The difference
between this model and ours is that our regression model is
defined in terms of the latent factors and is augmented with
a linear factor model for covariates. Second, the exponential
Principal Component Analysis of Collins et al. (2002) that
restricts Ωθ(·) to be a linear function of the factors. Third,
the Deep Latent Gaussian model of Rezende et al. (2014)
where, compared with their general model, we work with
only one layer of Gaussian latent variables. Fourth, the
Deep Latent Variables models of Mattei & Frellsen (2018),
but we restrict yi|zi to have a distribution in the exponential
family, as opposed to any arbitrary distribution.

Because the model for covariates is still a linear Gaussian
factor model, the WLSE for factors remains an asymptot-
ically invariant representation. Thus, we focus on under-
standing the extent to which such a representation can help a
decision maker in solving a downstream task. Proposition 4
shows that—as k grows large and if we treat the model’s pa-
rameters as known—the WLSE for the factors can be used
to evaluate the expected loss of any action. The key insight
is that the expected loss can be computed using the expo-
nential family distribution but assuming that the unobserved
factors are actually equal to their estimated value.

Outline. The rest of this paper is organized as follows.
Section 2 presents the model and main results. Section 3
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provides a decision-theoretic definition of a task and shows
that the mean of yi|xi solves any task. Section 4 discusses
the extensions of our main results.

2. Model and Main Results
There is a scalar outcome variable yi, a vector of k covariates
xi, and a vector of d latent features zi (d < k). Consider
the linear factor model

yi = α′zi + ui, (1)
xi = β′zi + vi, (2)

where ui

vi
zi

 ∼ N

0
0
0

 ,

σ2
u 0 0
0 Σv 0
0 0 Id

 . (3)

It is further assumed that Σv is diagonal with strictly pos-
itive entries, and that βΣ−1

v β′ has rank d. The above
model parameterizes the joint distribution of (yi, xi) by
θ ≡ (α, β, σ2

u,Σv). Equations (1)-(2) can be viewed as a
restricted version of the diffusion index forecasting model
of Stock & Watson (2002), analyzed in detail by Bai & Ng
(2006).

2.1. Sufficient and Invariant Representations

The following definitions of representations are based on
Achille & Soatto (2018), but properly adjusted to account
for the parametric nature of the linear Gaussian factor
model.

Definition 1 (Sufficient Representation). We say that z∗i is
a representation of xi at θ if z∗i is a function of xi—possibly
stochastic—and

Pθ(z
∗
i |yi, xi) = Pθ(z

∗
i |xi). (4)

The representation is said to be sufficient at θ if the condition

yi⊥xi|z∗i (5)

holds under Pθ.

As explained in the introduction, Equation (4) formalizes
the idea that a representation must be a transformation of
only covariates, and not the outcome variable. Equation
(4) allows for a large class of random variables to serve as
representations of xi. For instance, any function of the form
a + b′xi + ci, where ci is random vector independent of
(ui, vi, zi), is a representation.

Not all representations are sufficient, as defined in Equation
(5). One interpretation of sufficiency is that, once a sufficient

representation is constructed, it is then possible to throw
away all covariates and retain all relevant information about
the outcome variable.

Beyond sufficiency, we are interested in the invariance of
representations as defined below.

Definition 2 (Nuisance and Invariance). A random vari-
able ni is a nuisance at θ if

xi ̸⊥ni and yi⊥ni

under Pθ. A representation z∗i is said to be invariant to a
nuisance ni if the mutual information

Iθ(z
∗
i , ni) ≡ KL (Pθ(z

∗
i , ni)||Pθ(z

∗
i )⊗ Pθ(ni)) (6)

equals zero.

The definition of nuisance is quite general, and in principle
refers to any random variable ni that affects xi, and is inde-
pendent of yi. Throughout the rest of the paper we consider
vi (the error term in the factor model for covariates xi) as
the nuisance of interest.

A representation is said to be maximally insensitive to nui-
sance ni—in a class of representations C—if it minimizes
(6) among the representations in C. A representation is said
to be asymptotically invariant under a sequence of parame-
ters {θk}—indexed by the dimension of the covariates—if
Iθ(z

∗
i , ni) → 0 as k → ∞.

2.2. Representations in the Linear Gaussian Factor
Model

Consider the following (nonstochastic) linear representa-
tions of xi.

Eθ[yi|xi], Eθ[zi|xi], z
∗
i ≡ (βΣ−1

v β′)−1βΣ−1
v xi. (7)

The first representation is the conditional mean of yi given
xi (assuming the parameter θ is known). The second one
is the conditional mean of the factor zi given xi, also as-
suming θ is known.1 Finally, z∗i is the WLSE of zi based
on Equation (2) and assuming β is known (see Anderson
(2003), Section 14.7, Equation 1, p. 592).

Let Q denote an arbitrary orthogonal matrix of dimension
d.

Proposition 1.

i) In the model given by (1)-(2), Eθ[yi|xi], Eθ[zi|xi], and
Qz∗i are sufficient representations of xi at θ.

1In the Gaussian factor model, both conditional means are
linear functions of the covariates.
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ii) The mutual information between these representations
and the nuisance vi satisfies

Iθ(Eθ[zi|xi], vi) = Iθ(Qz∗i ; vi) ≥ Iθ(Eθ[yi|xi]; vi) > 0,

for any fixed k, where the first inequality is strict if and
only if d > 1.

iii) These sufficient representations are asymptotically
invariant to the nuisance vi under any sequence of pa-
rameters for which det(Id+(βkΣ

−1
v,kβ

′
k)

−1) ≤ 1+o(k)
as k → ∞.

The proof of Proposition 1 is given in Appendix A.1. All
results follow from calculations based on the multivariate
normal model. Some comments on Proposition 1.

First, although it is immediate to recognize Eθ[yi|xi],
Eθ[zi|xi], and Qz∗i as representations, it is less evident that
such representations are sufficient.

Consider the case of the WLSE of the factors. If Qz∗i
provided a noiseless measure of the factors zi, sufficiency
would be verified by definition (as, conditional on the fac-
tors, yi and xi are independent). However, the representa-
tion Qz∗i measures zi with error:

Qz∗i = Qzi +Q(βΣ−1
v β′)−1βΣ−1

v vi. (8)

The proof of Proposition 1 in Appendix A.1, verifies that
conditioning on Qz∗i makes yi and xi independent. The
derivation crucially exploits the Gaussian nature of the fac-
tor model, although we later discuss how the proof of suffi-
ciency can be extended to a more general class of models.

Second, Part ii) of Proposition 1 provides a comparison of
the representations in terms of mutual information—which
is an information-theoretic measure of dependence—with
nuisance vi. Equation (8) already shows that Qz∗i and vi
are not independent, and the mutual information formula
in Proposition 1 further quantifies the dependence.2 Part
ii) of Proposition 1 shows that the mutual information be-
tween Qz∗i and vi will equal the mutual information be-
tween Eθ[zi|xi] and vi. Both Qz∗i and Eθ[zi|xi] (which
have dimension d) are typically viewed as legitimate esti-
mators of zi (one of them frequentist, and the other one
Bayesian).

The representation Eθ[yi|xi] (weakly) dominates the other
in terms of mutual information. It is already a bit surprising
that Eθ[yi|xi] is a sufficient representation (because this
conditional mean cannot be viewed as an estimator of the
underlying factors). It is even more remarkable that such

2In Appendix A.5, Lemma 2 provides a tractable and close
form expression for mutual information.

representation is better in terms of invariance to the nuisance
vi.

Third, Part ii) of Proposition 1 also shows that none of the
above representations are invariant to vi. However, Part
iii) of Proposition 1 shows that the mutual information be-
tween the representations and vi converges to zero as the
dimension of the covariates goes to infinity. One possible
intuition is that, as k → ∞, the measurement error in (8)
vanishes. The result then follows from the independence
of vi and zi. To formalize this result we needed to impose
some restrictions on how the parameters of the factor model
change as k increases. One common assumption in the
literature—see Assumption B in Bai & Ng (2006)—is that
the factor loadings have a well-defined limit when scaled by
the number of covariates; namely,

k−1βkΣ
−1
v,kβ

′
k → Σβ ,

where Σβ is a nonsingular d× d matrix. This assumption,
which shall be used later, implies that

det(Id + (βkΣ
−1
v,kβ

′
k)

−1) → 1,

which allows us to verify the assumptions of Part iii) of
Proposition 1.

2.3. Maximally Insensitive Representations

The representation Eθ[yi|xi] is already appealing because
of its sufficient, and it has the lowest possible dimension. In
addition, as k → ∞ this representation is asymptotically
invariant. The only limitation is that it is not invariant to
nuisance vi for a fixed k. Is it possible to find a better
representation? The following proposition shows this is
impossible, with some qualifications.

Proposition 2: In the model given by (1)-(2), the repre-
sentation Eθ[yi|xi] is maximally insensitive to nuisance vi
among the class of all nonstochastic, linear, and sufficient
representations.

The proof of Proposition 2 in Appendix A.2 is construc-
tive. The key argument is that for any nonstochastic, linear,
sufficient representation of dimension p ≥ 1, we can find
a representation of the same dimension and with the same
mutual information with respect to the nuisance, but ex-
plicitly contains Eθ[yi|xi] as one of its entries. Intuitively,
this implies that any nonstochastic, linear, and sufficient
representation—in a sense—captures other features of the
covariates that are not Eθ[yi|xi]. As a consequence of the
chain rule of conditional mutual information, we can show
that the mutual information with respect to nuisance vi of
Eθ[yi|xi] has to be equal or smaller.

An implication of our result is that all nonstochastic, linear,
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and sufficient representation of dimension one are propor-
tional to Eθ[yi|xi] and thus have the same mutual informa-
tion with respect to vi. This means that all nonstochastic,
linear, and sufficient representations of dimension one are
maximally insensitive to nuisance vi.

A representation that is maximally insensitive to nuisance
vi in the class of sufficient representations is useful for
two reasons. First, sufficient representations and covariates
xi have the same mutual information with outcome vari-
able yi. Second, nuisance vi affects only the covariates
but not the outcome variable, thus a maximally insensitive
representation minimizes the effect of the nuisance in the
representation.

3. Downstream Tasks
Intuitively, a good representation should be useful in
downstream tasks, such as prediction. Therefore, it is
important to explore the extent to which the representations
discussed in Section 2 are useful for solving decision
problems that involve (yi, xi), such as prediction. In this
section, we provide a decision-theoretic definition of a task
and show that, in the model (1)-(2), the conditional mean
of yi given xi solves any task efficiently, in a sense we
make precise. More generally, in Section 4 we provide an
algorithm of how the WLSE of the factors can be used to
asymptotically solve any task when k → ∞.

PRELIMINARIES: Let Pθ denote a joint distribution over
(yi, xi) ∈ Y × X . Let A denote some action space. We
define a loss function in the usual way: L : Y ×A → R.3

We refer to any (measurable) function a : X → A as an
algorithm. The expected loss of an algorithm a(·) at θ is
referred to as the risk of a(·) at θ. That is, we define the risk
function R(·, ·) as

R(a(·), θ) ≡ Eθ[L(y, a(x))]. (9)

A downstream task (or simply a task) is a tuple:

T ≡ (L,A,Pθ). (10)

An algorithm a(·) is optimal for task T at θ if

R(a(·), θ) ≤ R(a′(·), θ), (11)

for any other algorithm a′(·).

Definition 3: A representation z∗ solves task T at θ if there
is an optimal algorithm a∗—for task T at θ—that depends
on x only through the representation.

3Examples of loss functions are quadratic loss, L(y, a) =
(y − a)2, or the check function, L(y, a) = y(τ − 1{y < 0}).

That is, a representation z∗ solves a task T if we can find
an algorithm a(·) that only uses z∗ as input and has smaller
or equal risk than any other algorithm. We further say that a
representation z∗ solves task T efficiently at θ if there is no
other representation of a lower dimension that solves task
T at θ.

The law of iterated expectations implies that an optimal
algorithm at θ must choose, for each x, the action that
minimizes

Eθ[L(y, a)|x].
Such an expectation depends only on the conditional distri-
bution of yi|xi at θ.

Proposition 3: In the linear Gaussian factor model given
by (1)-(2) the representation Eθ[yi|xi] solves any task T
efficiently at θ.

It is well-known that Eθ[yi|xi] is the optimal predictor under
quadratic loss. However, the result in Proposition 3 shows
that, for any loss, it is possible to dispense with the covari-
ates, retain the representation Eθ[yi|xi] and still achieve the
smallest possible risk at θ.

The idea behind the proof is quite simple; the details are
presented in Appendix A.3. In the linear Gaussian factor
model the conditional distribution of yi|xi is characterized
by its first two moments, and the second moment depends
only on θ and not on x. Because the representation is the
first moment, the one-dimensional representation Eθ[yi|xi]
has all information about the conditional distribution of
yi|xi.

4. Extensions
The main results of this paper have been derived under
strong assumptions: a linear Gaussian factor model for
covariates and response variable. In this section, we discuss
a generalization of our main results by allowing a different
model for the outcome variable. In addition, we propose an
algorithm to asymptotically solve a downstream task using
an asymptotically invariant representation.

4.1. A More General Model for the Outcome Variable

Just as before, suppose there is a scalar outcome variable yi
with support Y , a vector of k covariates xi, and a vector of
d latent features zi (d < k). Consider the model

yi | xi, zi, α, σu ∼ f(yi | zi, α, σu), (12)
xi = β′zi + vi, (13)

where f(yi|zi, α, σu) denotes a density of the form,

h(y, σu) exp([Ωα(zi)yi −Ψ(Ωα(zi))]/a(σu)). (14)
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In our notation h(·, ϕ) is a real-valued function parametrized
by σu defined on Y , a(·) is a positive function of σu,
and Ψ(·) is a smooth function (usually referred to as
the log-partition function) defined on the real line. The
density in (14) is a slight modification of Generalized
Linear Models described in McCullagh & Nelder (1989,
Equation 2.4) where Ωα(zi) now plays a role analogous
to the natural parameter of the exponential family.4

Throughout this section, we assume the following:

Assumption 1 : Ωα : Rd → R is a Lα-Lipschitz function;
i.e.,

|Ωα(z1)− Ωα(z2)| ≤ Lα|z1 − z2|.
We maintain the assumptions(

vi
zi

)
∼ N

((
0
0

)
,

(
Σv 0
0 Id

))
, (15)

yi ⊥ xi | zi, (16)

where Σv is a diagonal matrix with strictly positive
entries, and βΣ−1

v β′ has rank d. Once again, the above
model parameterizes the joint distribution of (yi, xi) by
θ ≡ (α, β, σ2

u,Σv). Throughout this section, we shall also
assume θ is known.

We now discuss the relation of (12)-(13) with existing re-
lated models in the literature.

1. Nonlinear Regression model with Neural Networks:
Schmidt-Hieber (2020) recently analyzed a model of
the form

yi = Ωα(zi) + ϵi, ϵi⊥zi, ϵi ∼ N (0, σ2
u),

where zi is observed and Ωα(zi) is a deep neural net-
work. Schmidt-Hieber (2020) assumed (yi, zi) are
observed. In contrast, we assume that zi is a latent
factor, ϵi⊥(xi, zi), and there is a linear factor model
for xi.

2. Exponential Family Principal Component Analysis: If
we assume that Ωα(zi) = α′zi, our model becomes
the exponential family principal component analysis
model in Collins et al. (2002). Our model assumes
that if the latent factors are known, the covariates xi

will not effect the distribution of yi. If we maintain
the linear factor model in (13), the only use of the
covariates is their ability to estimate zi.

3. Deep Latent Gaussian Model: The model (12)-(13)
can be described as a particular case of the general

4Normal, Logistic, and Poisson models can be captured with
conditional densities of the form (14). See Table 2.1 p. 29 of
McCullagh & Nelder (1989)

model described in the highly cited work of Rezende
et al. (2014). Compared with their model, we assume
there is only one hidden layer of latent variables.

4. Deep Latent Variable Model: The outcome model (12)
is also a special case of the model in Mattei & Frellsen
(2018) for two reasons. First, our outcome variable is
scalar. Second, our model uses an exponential family
density.

4.2. Computing Expected Loss using Representations

Characterizing sufficient and maximally insensitive repre-
sentations in this model is more challenging. However, there
is a sense in which the WLSE of the factors, z∗i , is still a
useful representation. As mentioned in Proposition 1, this
representation is asymptotically invariant to the nuisance in
the factor model for the covariates.

We would like to argue that the representation can be used to
simplify the computation of the expected loss of a particular
action. To see this, note that for any loss function L(y, a)
the optimal algorithm prescribes the action that minimizes
Eθ[L(y, a)|x]. The conditional density of Y given X is a
mixture distribution:

fθ(y|x) =

∫
f(y|z, x, α, σu)dFθ(z|x),

=

∫
f(y|z, α, σu)dFθ(z|x),

where the last equality follows from (12). We can show that,
as k → ∞, the distribution of z|x, Fθ(z|x), concentrates
around the WLSE of the factor, z∗, which is a linear function
of x.5 Thus,

fθ(y|x) ≈ f(y|z = z∗, α, σu).

In this case, the best action at θ can be found by computing
expected loss according to a model in which yi has a dis-
tribution as in (14) but evaluated at z∗i . This suggests that
we can use a representation z∗i to compare different actions
when solving downstream tasks, provided the dimension of
xi is large. This can be performed by defining an auxiliary
outcome variable y∗i :

y∗i | z∗i , α, σu ∼ f(y∗i | z∗i , α, σu), (17)

where this auxiliary outcome variable formalizes the discus-
sion described above and does not depend on latent factors,
zi.

We claim that, under some regularity assumptions, we can
evaluate the performance of different actions in the down-
stream task using (17) as k → ∞.

5In fact, the simple decomposition for fθ(y|x) suggests that
Eθ[zi|xi] is still a sufficient representation, despite having a more
complicated model for the outcome variable. The reason is that
Fθ(z|x) only depends on covariates through Eθ[zi|xi].
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We first restrict the set of downstream tasks that we are
interested in, by restricting the loss functions that we are
working with.

Assumption 2 : The loss function L(·, a) : Y → [0,+∞)
is dominated by a quadratic polynomial; i.e.,

L(y, a) ≤ c1 + c2 y
2,

where c1, c2 > 0 are constants that could be functions of a.

This assumption allows for quadratic, check, and 0-1
losses.6 Thus, we are interested in tasks such as predic-
tion, quantile estimation, and classification.

We further require some control on the moments of y|x.
Because of (14), all moments of y|z will exist. However,
the distribution of y|x is a mixture distribution of y|z and
z. Consequently, we need to be able to integrate over the
moments of y|z. We achieve this by requiring that the tails
of y|z have polynomial decline and is a function of the
parameter Ωα(z):

Assumption 3: The exponential family satisfies the follow-
ing regularity condition,

Pθ[|y| ≥ t | z, α, σu] ≤ t−4(c3 + c4 exp(c5|Ωα(z)|)),

for any z and t > 0, where c3, c4, and c5 are nonnegative
constants.7

Proposition 4: Suppose Assumptions 1-3 hold. Consider
evaluating the expected loss of an action a given some value
of the covariates x. Suppose that as k → ∞ the parameters
of the model and covariates satisfy

βΣ−1
v β′/k → Σβ︸︷︷︸

d×d

and βΣ−1
v x/k → µβ︸︷︷︸

d×1

,

where Σβ is nonsingular. Then, the difference∫
L(y, a)f(y | xk, α, σu)dy︸ ︷︷ ︸

Eθ[L(y,a)|x]

−
∫

L(y∗, a)f(y∗ | z∗i (xk), α, σu)dy
∗︸ ︷︷ ︸

expected loss for the auxiliary model

,

(18)

goes to zero, as k → ∞.

6The quadratic function, (y− a)2 ≤ 2y2 +2a2, and the check
function, y(a−1y<0) ≤ 0.5max{a, 1−a}y2+0.5max{a, 1−
a}, satisfy Assumption 2.

7This assumption is satisfied for Normal, Logistic and Poisson
models, for example.

The key insight of this proposition is that the expected loss
can be computed using the exponential family distribution
but assuming that the unobserved factors are equal to their
estimated values, which are given by the representation. The
main idea is that Assumption 2 is sufficient to prove (18)
for a quadratic loss function. To conclude the proof, we use
the proposition assumptions to verify that the probability
density function converges pointwise and Assumption 1
and 3 to guarantee that we can apply a variation of the
Dominated Convergence Theorem. Details are presented in
Appendix A.4.

Proposition 4 was derived for a fixed action a and known
parameters θ. However, it suggests a strategy for solving
downstream tasks when the dimension of xi is large.

Consider the following approach:

1. Estimate β from the linear factor model for xi.

2. Compute the feasible version of z∗i , given by ẑ∗i ≡
(β̂Σ̂vβ̂

′)−1β̂Σ̂vxi.

3. Treat ẑ∗i as zi and estimate the parameters α and σu in
the exponential family model.

4. Pick the action that minimizes the expected loss ac-
cording to

y∗i | ẑ∗i , α̂, σ̂u ∼ f(y∗i | ẑ∗i , α̂, σ̂u), (19)

In the case of prediction, predict using Ψ′(Ωα̂(ẑ
∗
i ))

These four steps seem to generalize the forecasting
algorithm of Stock & Watson (2002) and the ‘unsupervised
pretraining’ strategy described in Chapter 15 of Goodfellow
et al. (2016). We believe that it is possible to use standard
results in the asymptotic analysis of factor models to
formalize the validity of this strategy, provided we make
high-level assumptions about our ability to consistently
estimate the parameters α and σu of the function Ωα(·))
(which could be a neural network). The derivation of these
results would need to consider asymptotics where both N
(the number of training examples) and k (the dimension of
the covariate vector) diverge to infinity. We plan to pursue
this extension in future work.

5. Conclusion
In this paper, we analyzed recent theoretical developments
in the representation learning literature in the context of a
linear Gaussian factor model. In particular, we applied the
definitions of representations in Achille & Soatto (2018) and
properties studied therein to search for good representation
in the linear Gaussian factor model.
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We showed that Eθ[yi|xi], Eθ[zi|xi], and any orthogonal ro-
tation of the usual WLSE of zi are sufficient representations
of xi at θ. These representations are not invariant, but we
showed they are asymptotically invariant as the dimension
of the covariate vector goes to infinity.

We also showed that Eθ[yi|xi] is maximally insensitive to
nuisance vi; among the class of all nonstochastic, linear,
and sufficient representations. In addition, we showed that
this representation can be used to solve any task efficiently,
not only prediction. Our definition of a task was decision-
theoretic based: we defined a task using a loss function and
an action space.

Finally, we considered an extension of the linear Gaussian
factor model allowing for a more complicated distribution of
the outcome variable conditional on the factors. Our frame-
work allowed us to suggest a simple approach to use the
WLSE of the latent factors, zi, to compare different actions
that are relevant for a downstream task. Our approach can
be viewed as a generalization of the forecasting algorithm
of Stock & Watson (2002) and the ‘unsupervised pretrain-
ing’ strategy described in Chapter 15 of Goodfellow et al.
(2016).
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A. Proofs of Main Results
A.1. Proof of Proposition 1

The proof of this proposition has three parts as was discussed in the main text. First, we will prove that Eθ[yi |xi], Eθ[zi |xi]
and Qz∗i are sufficient representations. Second, we will compute the mutual information with respect to the nuisance vi.
And third, we will prove that these representation are asymptotically invariant.

Part i): Algebra on multivariate normal distribution shows

Eθ[yi|xi] = α′βΣ−1
x xi and Eθ[zi|xi] = βΣ−1

x xi,

where Σx ≡ Σv + β′β. Define by A1 ≡ α′βΣ−1
x , A2 ≡ βΣ−1

x and A3 ≡ (βΣ−1
v β′)−1βΣ−1

v . This means that we can
write the three representations as deterministic linear representations of x:

Eθ[yi | xi] = A1x, Eθ[zi | xi] = A2x and z∗i = A3x

By Lemma 1 in Appendix A.5, we conclude that these three representation are sufficient representations since we can verify
that inverse matrix of AjΣxA

′
j exists and

ΣxA
′
j(AjΣxA

′
j)

−1Ajβ
′α = β′α,

for j = 1, 2, 3.

Part ii): By Lemma 2 in Appendix A.5, we knows that for any ẑi ≡ Axi such that the inverse of matrix (AΣxA
′)−1 and

Aβ′βA′ are well-defined, then the mutual information between ẑi and vi is

Iθ(ẑi; v) =
1

2
ln

( det(AΣxA
′)

det(Aβ′βA′)

)
.

By part i), we know that the representations in this proposition are deterministic and linear. Also we can verify that Ajβ
′βA′

j

has inverse for j = 1, 2, 3. Then, algebra shows

Iθ(Eθ[yi | xi]; vi) =
1

2
ln

(
α′(Id − (Id +Ψ)−1)α

α′(Id − (Id +Ψ)−1)2α

)
,

Iθ(Eθ[zi | xi]; vi) =
1

2
ln

(
1

det(Id − (Id +Ψ)−1)

)
,

Iθ(z
∗
i ; vi) =

1

2
ln

(
det(Id +Ψ)

det(Ψ)

)
,

where Ψ = βΣ−1
v β′.

To conclude the comparison of the representations in terms of mutual information with the nuisance vi, observes that
I(Eθ[zi | xi]; vi) = Iθ(ẑi; vi) is equivalent to prove

det(Id +Ψ)

det(Ψ)
=

1

det(Id − (Id +Ψ)−1)
,

which is true by algebra manipulation.

To prove I(z∗i ; vi) ≥ Iθ(Eθ[yi | xi]; vi), denote by λ1 ≤ ... ≤ λd the eigenvalues of Id − (Id +Ψ)−1 and by w1, ..., wd the
associated eigenvectors. An important observation is that all these eigenvalues are lower than one and we can use them
compute I(z∗i ; vi) and I(Eθ[yi | xi]; vi). In particular, we have

1

det(Id − (Id +Ψ)−1)
=

1

λ1...λd
,
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and if we write α =
∑d

m=1 amwm using the eigenvectors wi, we have

α′(Id − (Id +Ψ)−1)α

α′(Id − (Id +Ψ)−1)2α
=

∑d
m=1 a

2
mλm∑d

m=1 a
2
mλ2

m

This implies that I(z∗2 ; v) ≥ Iθ(z
∗
3 ; v) since λ’s are lower than one, where equality only holds if d = 1.

Part iii): By part ii), it will be sufficient to prove that

lim
k→∞

Iθ(z
∗
i ; vi) = 0,

to guarantee that the three representations are asymptotically invariant. By part 2, we have

Iθ(z
∗
i ; vi) =

1

2
ln

(
det(Id +Ψ)

det(Ψ)

)
=

1

2
ln
(
det(Id +Ψ−1)

)
,

and by assumption det(Id +Ψ−1) → 1 as k → ∞. This concludes our proof.

A.2. Proof of Proposition 2

Case 1: p > 1. Suppose ẑi = Axi is a deterministic linear sufficient representation of dimension p, where A ∈ Rp×k and
p < k. We want to prove

Iθ(ẑi; vi) ≥ Iθ(Eθ[yi|xi]; vi)

where Eθ[yi|xi] = α′βΣ−1
x x is the conditional mean of yi given xi and Σx ≡ Σv + β′β. By Proposition 1, we know that

Eθ[yi|xi] is also a deterministic linear sufficient representation. Define A3 ≡ α′βΣ−1
x .

By Lemma 1 in Appendix A.5, we know that

ΣxA
′(AΣxA

′)−1Aβ′α = β′α

and
ΣxA

′
3(A3ΣxA

′
3)

−1A3β
′α = β′α.

These two equations imply

A′ (AΣxA
′)−1Aβ′α︸ ︷︷ ︸
p×1

= A′
3 (A3ΣxA

′
3)

−1A3β
′α︸ ︷︷ ︸

1×1

,

and this is equivalent to
Q0︸︷︷︸
1×p

A︸︷︷︸
p×k

= A3︸︷︷︸
1×k

, (20)

where

Q0 ≡ (AΣxA
′)−1Aβ′α

(A3ΣxA′
3)

−1A3β′α
.

Thus, we can construct a (p− 1)× 1 matrix B such that

Q ≡
(
Q0

B

)
is an invertible matrix. Define the new representation of dimension p

z̃i ≡ Q︸︷︷︸
p×p

Axi︸︷︷︸
p×1

.
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The new representation is a linear transformation of ẑi. Equation (20) implies

z̃i =

Q0Axi

BAxi︸ ︷︷ ︸
(p−1)×1

 =

(
Eθ[yi|xi]
BAxi

)
.

Thus, the first entry of the new representation is the conditional mean of yi given xi. By Lemma 2 in Appendix A.5, we have

Iθ(z̃i; vi) =
1

2
ln

( det(QAΣxA
′Q′)

det(QAβ′βA′Q′)

)
.

Thus, algebra shows that

Iθ(z̃i; vi) =
1

2
ln

( det(Q) det(AΣxA
′) det(Q′)

det(Q) det(Aβ′βA′) det(Q′)

)
,

(as det(MN) = det(M) det(N))

=
1

2
ln

( det(AΣxA
′)

det(Aβ′βA′)

)
,

= Iθ(ẑi; vi).

Thus, we have shown that the mutual information between z̃ and the nuisance v is the same as the mutual information
between ẑi and vi. Note that ẑi was an arbitrary sufficient representation, and we obtained z̃i from ẑi by transforming the
latter to have the conditional mean of y given x in the first coordinate.

Now, we will prove that I(z̃i; vi) ≥ Iθ(Eθ[yi|xi]; vi). Since z̃′i = [Eθ[yi|xi], x
′
iA

′B′]′, by chain rule on conditional mutual
information we have

Iθ(z̃; vi) = Iθ(Eθ[yi|xi], BAx; vi) = Iθ(Eθ[yi|xi]; vi) + I(BAx; v | Eθ[yi|xi])︸ ︷︷ ︸
≥0

≥ Iθ(Eθ[yi|xi]; vi).

Then, we conclude the conditional mean of yi given xi is maximally insensitive to vi (among all linear deterministic
representations); i.e.,

Iθ(ẑi; vi) = Iθ(z̃i; vi) ≥ Iθ(Eθ[yi|xi]; vi).

Case 2: p = 1. By Lemma 1 in Appendix A.5, we have

ΣxA
′ (AΣxA

′)−1Aβ′α︸ ︷︷ ︸
1×1

= β′α

This implies

ẑi = Axi = γα′βΣ−1
x xi = γEθ[yi|xi]

where γ = (AΣxA
′)−1Aβ′α ∈ R− {0}. It follows that I(ẑi, vi) = Iθ(Eθ[yi|xi], vi). Thus, deterministic linear sufficient

representation of dimension one are also maximally invariance.

A.3. Proof of Proposition 3

The proof of this proposition has three main observations. First, posterior distribution yi|xi is a Gaussian distribution
characterized by its two moments (mean and variance), under our model (1)-(2). Second, assuming the parameter θ is known
implies that we known the variances of yi|xi,

V(yi | xi) = V(yi)− Eθ[Eθ[yi|xi]
2].

Finally, the posterior distribution yi|xi is parametrized by the posterior mean, which is Eθ[yi|xi]. These three observations
implies that we can solve task T using only the representation Eθ[yi|xi], which also has dimension one. This conclude the
proof of this proposition.
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A.4. Proof of Proposition 4

The conditional distribution of the outcome variable to the covariates, yi | xi,k ∼ f(yi | xi,k), is expressed as

f(y | x) ≡
∫

f(y | x, z)ϕ(z | µk(x),Σk(x)) dz,

where µk(x) ≡ βΣ−1
x x and Σk(x) ≡ Id − βΣ−1

x β′ are the posterior mean and variances. Since yi ⊥ xi | zi, we can write
f(y | z, α, σu) instead of f(y | x, z). This give us

f(y | x) =
∫

f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dz.

We break the proof of in two main parts. The first part proves that∫
L(y, a)

∫
f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dzdy (21)

converges to ∫
L(y, a)f(y | z0, α, σu)dy, (22)

as k → ∞, and where z0 ≡ Σ−1
β µβ . In the second part, we prove that∫

L(y, a)f(y | z∗i (xi,k), α, σu)dy (23)

is also converging to equation (22). These two main parts implies (18).

Proof of Part 1 : In equation (21) all the terms in the integrals are positive. By Tonelli’s Theorem we can change the order
of the integrals. This implies that equation (21) is equal to∫ ∫

L(y, a)f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dzdy. (24)

Step 1: Replace z = µk(x) + Σ
1/2
k (x)w in equation (24) to obtain∫ ∫

L(y, a)f(y | µk(w), α, σu)ϕ(w | 0, Id) dwdy, (25)

where µk(w) ≡ µk(x) + Σ
1/2
k (x)w. Equation (22) can be written as∫ ∫

L(y, a)f(y | z0, α, σu)ϕ(w | 0, Id) dwdy. (26)

Algebra shows that µk(x) = z∗i (xi,k) + O(k−1) and Σk(x) = (βΣ−1
v β′/k)O(k−1). By assumptions of the proposition,

we have z∗i → Σ−1
β µβ = z0 as k → ∞. This implies that for a given w and y, we have

µk(w) = µk(x) + Σ
1/2
k (x)w → z0 as k → ∞.

Thus, we can expected that equation (25) converge to (26) since

f(yi | zi, α, σu) = h(y, σu) exp([Ωα(zi)yi −Ψ(Ωα(zi))]/a(σu))

is continuous on zi. This follows by the continuity of Ωα(zi) and Ψ(·), which holds under Assumption 1 and definition of
f(·|z, α, σu).

Step 2: By Assumption 2, equation (25) is bounded by∫ ∫
(c1 + c2y

2)f(y | µk(w), α, σu)ϕ(w | 0, Id) dwdy, (27)
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and, in a similar way, equation (26) is bounded by∫ ∫
(c1 + c2y

2)f(y | z0, α, σu)ϕ(w | 0, Id) dwdy. (28)

By Exercise 12, p. 133 in Dudley (2002), it will be sufficient to prove that (27) and (28) are well-defined, and that equation
(27) converges to (28). To do this, we can ignore the constants. Thus, we want to prove that

Eθ[y
2
k] → Eθ[y

2
0 ] as k → ∞, (29)

where
yk ∼ f(y | µk(w), α, σu)ϕ(w | 0, Id)

and
y0 ∼ f(y | z0, α, σu)ϕ(w | 0, Id)

Since the p.d.f. of yk converges to y0 point-wise, it follows that yk converges weakly to y0. By the Continuous Mapping
Theorem, it follows that y2k converges weakly to y20 . By Theorem 3.5, p.31 in Billingsley (1999), we only need to prove that
{y2k}k is uniformly integrable to conclude (29).

Step 3: We will prove that supEθ[|yk|3] < +∞, which implies that {y2k}k is uniformly integrable. For details see equation
(3.18), p.31, in Billingsley (1999). Algebra shows

Eθ[|yk|3] = Eθ[|yk|31{|yk|>1}] + Eθ[|yk|31{|yk|≤1}]

=

∫ ∞

1

Pθ[|yk|3 > t]dt+ Pθ[|yk| > 1] + Eθ[|yk|31{|yk|≤1}]

≤
∫ ∞

1

Pθ[|yk| > t1/3]dt+ 2

=

∫ ∞

1

∫
Pθ[|yk| > t1/3 | µk(w), α, σu]ϕ(w | 0, Id)dwdt+ 2.

Since all the terms are positive, we can apply Tonelli’s Theorem and change the order of the integrals. This implies

Eθ[|yk|3] ≤
∫ ∫ ∞

1

Pθ[|yk| > t1/3 | µk(w), α, σu]dtϕ(w | 0, Id)dw + 2,

and by Assumption 3, this is lower than∫ ∫ ∞

1

t−4/3
(
c3 + c4 exp(c5|Ωα(µk(w))|)

)
dt ϕ(w | 0, Id)dw + 2.

Algebra shows that expression above is equal to∫
3
(
c3 + c4 exp(c5|Ωα(µk(w))|)

)
ϕ(w | 0, Id)dw + 2,

where exp(c5|Ωα(µk(w))|) can be written as

exp(c5|Ωα(µk(w))− Ωα(z0) + Ωα(z0)|),

which is lower than
exp(c5|Ωα(µk(w))− Ωα(z0)|+ |Ωα(z0)|).

By Assumption 1, the previous expression is lower than

exp(c5Kα|µk(w)− z0|+ c5|Ωα(z0)|),

where µk(w)− z0 = µk(x)− z0 +Σ
1/2
k (x)w. This implies that

exp(c5|Ωα(µk(w))|) ≤ Ck exp(c5Kα|Σ1/2
k (x)w|),
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where Ck ≡ exp(c5Kα|µk(x)− z0|+ c5|Ωα(z0)|).

All this algebra implies,

Eθ[|yk|3] ≤
∫

3(c3 + c4Ck exp(c5Kα|Σ1/2
k (x)w|))ϕ(w | 0, Id) dw + 2, (30)

which can be bounded using the Moment Generation Function of the Normal distribution. To see this, define by Γk ≡
||Σ1/2

k (x)|| the matrix norm. This implies

|Σ1/2
k (x)w| ≤ Γk|w| ≤ ΓkΣ

d
j=1|wj |,

where the second inequality comes from triangle inequality or algebra. Using this, we have that (30) is lower than∫
3(c3 + c4Ck exp(c5KαΓkΣ

d
j=1|wj |))ϕ(w | 0, Id) dw + 2.

By definition, Ck converges to exp(c5|Ωα(z0)|), thus is uniformly bounded. Then, it will be sufficient to prove that∫
exp(c5KαΓkΣ

d
j=1|wj |)ϕ(w | 0, Id) dw

is uniformly bounded. To see that, observe that this expression can be written as

d∏
j=1

∫
exp(c5KαΓk|w|)ϕ(w | 0, 1) dw,

which is lower that
d∏

j=1

∫
(exp(−c5KαΓkw) + exp(c5KαΓkw))ϕ(w | 0, 1) dw.

Define by Mϕ(t) ≡
∫
exp(tw)ϕ(w | 0, 1) dw the Moment Generation Function. Then, we have

Eθ[|yk|3] ≤ 3c3 + 3c4Ck

{
Mϕ(−c5KαΓk) +Mϕ(c5KαΓk)

}d
+ 2. (31)

By continuity, we know that Γk → 0 as k → ∞. This implies that equation (31) is uniformly bounded. This complete the
proof of uniformly integrability.

Proof of Part 2 : In a similar way as we did for part 1 in step 2, it will be sufficient to prove that∫
y2f(y | z∗i (xi,k), α, σu)dy →

∫
y2f(y | z0, α, σu)dy.

To conclude this, as we did for part 1 in step 3, it will be sufficient to prove that∫
|y|3f(y | z∗i (xi,k), α, σu)dy (32)

is uniformly bounded. By Assumption 3, and following step 3 above, this expression is lower than

3c3 + 3c4 exp(c5|Ωα(z
∗
i (xi,k))|) + 2,

which converges to
3c3 + 3c4 exp(c5|Ωα(z0)|) + 2.

This proves that (32) is uniformly bounded. This complete the proof.
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A.5. Technical Lemmas

In this section, we present two technical lemmas to study the deterministic linear representations and its relations with
sufficiency concept and to compute mutual information with the nuisance vi. The derivation of these results use basic
algebraic manipulation based on the multivariate normal model.

Lemma 1: Let ẑi be a deterministic linear representation of xi,

ẑi ≡ A︸︷︷︸
p×k

xi︸︷︷︸
k×1

.

Suppose the inverse of Eθ[ẑiẑ
′
i] exists. Then, ẑi is a sufficient representation of xi at θ if and only if A solves the Sufficient

Representation Equation (SRE):

ΣxA
′(AΣxA

′)−1Aβ′α = β′α, (33)

where Σx ≡ Σv︸︷︷︸
k×k

+β′β.

Proof. There are two parts:
Part I: Suppose A solves SRE. We will prove that ẑi = Axi is a sufficient representation of xi, i.e. yi⊥xi | ẑi. First observe
that xi

yi
ẑi

 ∼ N

0
0
0

 ,

 Σx β′α ΣxA
′

α′β Σy α′βA′

AΣx Aβ′α AΣxA
′

 .

where Σx = Σv + β′β, Σy = σ2
u + α′α and Eθ[ẑiẑ

′
i] = AΣxA

′. Since the vector [xi y
′
i ẑ

′
i]
′ is Gaussian, it follows that(

xi

yi

)
| ẑi ∼ N

(
µ,Σ

)
.

where µ = Σ12Σ
−1
2 ẑi and Σ = Σ1 − Σ12Σ

−1
2 Σ21. Here, Σ2 = AΣxA

′ has an inverse matrix by assumption and

Σ1 =

(
Σx β′α
α′β Σy

)
, and Σ12 =

(
ΣxA

′

α′βA′

)
= Σ′

21

Define

Σ12Σ
−1
2 Σ21 =

(
Σ1 Σ12

Σ21 Σ2

)
Algebra shows

Σ1 = ΣvA
′Σ−1

2 AΣx + β′βA′Σ−1
2 AΣx

Σ12 = ΣxA
′Σ−1

2 Aβ′α

Σ21 = α′βA′Σ−1
2 AΣx

Σ2 = α′βA′Σ−1
2 Aβ′α

Since A solve SRE and Σ2 = AΣxA
′, it follows that Σ12 = β′α. This implies that correlation between xi | ẑi and yi | ẑi is

zero, which proves that yi⊥xi | ẑi since (yix
′
i)

′ | ẑi is Gaussian.

Part II: Suppose that ẑi = Axi is a sufficient representation of xi. This implies yi⊥xi | ẑi, in particular correlation between
xi | ẑi and yi | ẑi is zero. This implies that Σ12 = β′α. Since Σ2 = AΣxA

′ we have

ΣxA
′(AΣxA

′)−1Aβ′α = β′α

which is the Sufficient Representation Equation, then A solves SRE.
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Lemma 2 : Suppose ẑi = Axi is a deterministic linear representation of dimension p and vi is the noise in the factor model
for the covariates xi. Assume in addition that the inverse of Eθ[ẑiẑ

′
i] and Aβ′βA′ exists, in particular that p < k. Then, the

mutual information between ẑi and vi is

Iθ(ẑi; v) =
1

2
ln

( det(AΣxA
′)

det(Aβ′βA′)

)
> 0,

where Σx ≡ Σv + β′β.

Proof. Since xi = β′zi + vi, where zi⊥vi, and ẑi = Ax, then(
ẑi
v

)
∼ N

((
0
0

)
,

(
AΣxA

′ AΣv

ΣvA
′ Σv

))
.

To compute the mutual information between ẑi = Axi and vi, we need to calculate the Kullback-Leibler divergence
between the multivariate normal distribution defined above and the following multivariate normal distribution (assuming no
correlation between ẑi and vi):

N
((

0
0

)
,

(
AΣxA

′ 0
0 Σv

))
.

By assumption, the inverse of both Eθ[ẑẑ
′] = AΣxA

′ and Σv exists. By Proposition 1 in Contreras-Reyes & Arellano-Valle
(2012), the Kullback-Leibler divergence between these two multivariate normal distributions is

1

2

{
ln

(
det(Ω2)

det(Ω1)

)}
.

where

Ω1 =

(
AΣxA

′ AΣv

ΣvA
′ Σv

)
and Ω2 =

(
AΣxA

′ 0
0 Σv

)
Since the inverse of both AΣxA

′ and Σv exists by assumption, Theorem 2 in Silvester (2000) implies that

det(Ω1) =det(Σv) det(AΣxA
′ −AΣvA

′)

=det(Σv) det(Aβ′βA′)

(since Σx = Σv + β′β)
det(Ω2) =det(Σv) det(AΣxA

′)

It follows that

Iθ(ẑi; v) =
1

2

{
ln

(
det(Ω2)

det(Ω1)

)}
=
1

2

{
ln

(
det(Σv) det(AΣxA

′)

det(Σv) det(Aβ′βA′)

)}
=
1

2

{
ln

(
det(AΣxA

′)

det(Aβ′βA′)

)}
which is the close form expression of this lemma.

To conclude that mutual information between ẑi and vi is positive, let us use the following the general fact. Mutual
information of two random variables is zero if and only if these random variables are independent. Since ẑi = g(β′zi + vi)
and vi both have in common vi, it follows that they are not independent. This implies I(ẑi, vi) > 0.


