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Abstract
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1 Introduction

An integer-valued outcome variable, Y}, is observed for j = 1...J different units during
t =1...T periods. The panel is short (in that 7' << J), and the outcome variable at each
period—conditional on covariates—is assumed to have a Poisson distribution. This paper
describes the statistical model’s conditional mean function when evaluated at counterfactual
values of the covariate vector. While this is a simple problem when all the covariates are
observed, there are a number of challenges when the main parameter of interest involves
counterfactual changes in variables that are not available to the econometrician. We address
these challenges for the case in which the unobserved covariates are time invariant.

The empirical application that illustrates and motivates the methods developed here is
the use of deadly force by police officers in the United States. This issue is of paramount
social importance, since over a thousand civilians die at the hands of law enforcement officials
every year. We construct a yearly panel of lethal encounters covering the period 2013-2018,
focusing on law enforcement agencies, rather than cities or states. Our agency-level data set
includes 7,585 law enforcement agencies (not only those that have been associated with police
homicides), along with several time-varying and time-invariant attributes: the population
served, the number of sworn officers relative to the population served, the murder rate, the
poverty rate, population demographics, the county level frequency of gun deaths, state laws
on the use of deadly force, and state laws protecting police from misconduct allegations.

Despite our efforts to collect reliable, comprehensive data on agency-level characteristics,
there are a number of important omitted variables which we believe are relatively stable over
time. Data for agencies’ selection practices, training, promotion standards, disciplinary pro-
cedures, and organizational culture are scarce or nonexistent.[] Anecdotal evidence suggests
that these variables are important predictors of police homicides and some departments are

“unusually quick to use force, slow to back down, and make the habit of releasing selective

!The Law Enforcement Management and Administrative Statistics (LEMAS) data set contains useful
information on many of these factors but covers only about 3,000 agencies, and is compiled once every three
years. We hope to exploit LEMAS in future work.



or misleading information about what happened” (Oppel, 2018)E] Respected criminologists
have also argued that management and cultural variables within police departments are im-
portant reasons why agencies differ in the rate at which they engage in police homicides
(Sherman et al, [1986; Zimring, [2017; [Sherman) 2018]). And at least two studies have shown
that changes in management procedures in specific cities were followed by decreases in police
homicides, and argued that changes in observables were unable to account for these decreases
(Sherman), [1983; Fyfel 1979).

To give a concrete idea of the hypothetical questions we would like to answer, consider
the following two examples. First, what would happen to the expected number of lethal
encounters involving the Phoenix Police Department if this department were to adopt the
selection practices, training, and organizational culture of the New York City Police Depart-
ment? Second, what would happen to the expected number of police homicides by the New
York City Police Department if the size of its force were reduced? The first is a counter-
factual question in which we would like to evaluate the conditional mean function of lethal
encounters using the observable characteristics of the Phoenix Police Department and the
unobservable characteristics of the New York Police Department. The second is a counter-
factual question in which we would like to evaluate the conditional mean function of lethal
encounters using both the observable and unobservable characteristics of the New York City
Police Department, but where we consider one or more counterfactual values for the size of
its force.

We answer these questions using Empirical Bayes methods (Robbins|, 1956, |1964; |Efron,
QOlO)E] To understand our approach consider the case in which there is only one unobserved

covariate that enters into the conditional mean of the Poisson distribution multiplicatively.

2Since we observe many more characteristics of the populations policed by the departments than of
the departments themselves, we believe that the most important unobserved variables are characteristics of
departments rather than populations. But there may be important unobserved characteristics of populations
also, such as attitudes towards law enforcement agents.

3Empirical Bayes methods and hierarchical Bayes models have already been used in the statistical analysis
of police homicides (Schwartz and Jahn| 2020). In this paper, we are more explicit about the parameters of
interest and use cross-sectional variation to dispense with strong parametric assumptions about unobserved
components.



Suppose the econometrician knows i) the joint distribution of the observed and unobserved
covariates, and ii) the slope coefficients of the observed covariates in the conditional mean
function. Under quadratic loss and some standard conditions, the best estimator of the
counterfactual involving the unobserved covariate of unit j uses its posterior mean as a
surrogate. That is, instead of evaluating the conditional mean function at the unobserved
covariate of unit j, the conditional mean function is evaluated at the expected value of the
unobserved covariate given the available data for unit j.

In practice the joint distribution of observed and unobserved characteristics is unknown.
We exploit the Poisson likelihood function to derive a panel data analog of the celebrated
formula of Robbins| (1956), where the posterior mean is expressed in terms of the cross-
sectional distributions of outcomes and covariates, and also on the slope coefficients of the
observed variables. Under assumptions that we shall spell out clearly—and that closely
follow the work of |[Honoré and Kesina| (2017)—the parameters that enter this formula can be
estimated consistently. Plugging in these estimated parameters transforms Robbins’ formula
into an Empirical Bayes estimator. It is then possible to quantify the sampling uncertainty in
the estimation of the counterfactuals by using delta-method/bootstrap arguments. Similar
applications of Empirical Bayes methods that motivated the analysis in this paper, but in
the context of normally distributed errors, appear in |Liu, Moon and Schortheide, (2020)), |Liu
(2020)), and |Gu and Koenker| (2020). Other recent applications of Empirical Bayes methods
are Angrist et al. (2020) and Arnold, Dobbie and Hull| (2020).

We thus estimate pairwise counterfactuals for lethal encounters that involve changing the
unobserved covariates of agency j by those of agency j'. We focus on the ten largest police
departments, ranked by population served. These are the primary departments serving the
cities of New York, Los Angeles, Chicago, Houston, Phoenix, Philadelphia, San Antonio,

San Diego, and Dallas, along with the Las Vegas Metro Police Department [T Together these

4Each of these departments served over 1.35 million people in 2018. Some sheriff’s offices are of compa-
rable size, but we exclude them from our analysis since they are very heterogeneous with respect to duties
performed.



departments were involved in 548 on-duty deadly force incidents over 2013-2018, which is
about 14% of the total number associated with police departments in the nation as a Wholeﬂ

Our data and methods yield the following results. When we order these ten departments
in terms of the estimated effect of their unobserved characteristics on lethal encounters,
we find the Phoenix Police Department to be the most deadly, and the New York City
Police Department to be the least. Our Empirical Bayes approach suggests—with 90%
confidence—that if all agencies had the unobserved characteristics of the New York City
Police Department the total number of lethal encounters would be in the interval [161,298],
compared with the observed 548; and if all agencies had Phoenix’s unobservable attributes,
the range for the total would be [850,1445]. The uncertainty here comes from the fact that
the model’s parameters required to construct the counterfactuals are estimated from the
panel of deadly force incidents.

The Phoenix Police Department was associated with 93 deadly force incidents over the
six year period. We find that they would have been responsible for only [11,32] killings if
they had the unobserved covariates of the New York City Police Department. Conversely,
the New York City Police Department (serving a much larger population) had 55 lethal
encounters over the same period, but would have been responsible for [162,499] if they had
the unobserved covariates of Phoenix Police Department.

We also estimate the effects of changes in observed characteristics. These can be ob-
tained directly from the coefficients of the Poisson regression model, treating the unobserved
variables as fixed effects. The sign on officers per population is positive, statistically insignif-
icant, and relatively small in magnitude: reducing the size of a police force by one officer

per thousand population leads to a reduction in lethal encounters of 1.2%E| Reducing gun

5These numbers are based on killings that involved on-duty officers from a single police department;
the precise criteria for assignment of homicides to agencies is described below. The remaining deadly force
incidents were associated with sheriff’s offices, state and federal agencies, highway patrols, and other non-
local agencies that do not have a well-defined or meaningful population served.

6This does not necessarily imply that contraction in department size would result in fewer police killings
at the margin; the overall effect would also depend on the impact on overall homicide victimization, which
has been found to be negatively correlated with force size (Chalfin et al.| [2021)).



death rates (unrelated to police action) by one percentage point reduces lethal encounters
by about 4.9%, while reducing the poverty rate by one percentage point leads to about 4%
fewer lethal encounters in a given year. In Section 5, we consider the question of whether
these effects are policy relevant and economically meaningful.

Finally, we consider counterfactuals where we change both unobserved covariates and
observed covariates. Our results suggest that the observed characteristics of some agencies—
along with their unobserved covariates—offer a path towards a significant reduction in lethal
encounters. Specifically, if all agencies had the observed and unobserved characteristics of
the New York City Police Department the lethal encounters would be reduced from 548 to
be in [115,189]. This is a reduction of at least 359 lethal encounters over a six year period.

The rest of this paper is organized as follows. Section [2] presents the model. Section [3| de-
fines agency-specific counterfactuals and formalizes an Empirical Bayes strategy to estimate
them. Section 4] describes our constructed data set. Section |5 presents results and Section 6

discusses extensions. All proofs are collected in the Appendix.

2 Model

This section presents the econometric framework that will be used to define the counterfac-
tual objects of interest. The methods developed in this section combine Poisson Regression
models for count panel data (Hausman, Hall and Griliches, [1984)), counterfactual analysis in
econometric models (Blinder} [1973;|Oaxaca, [1973; Stock, |1989; Dinardo, Fortin and Lemieux),
1996, (Chernozhukov, Fernandez-Val and Melly, |2013), and Empirical Bayes methods (Rob-
bins, |1956, |1964; [Efron, [2010)).



2.1 Notation

An integer-valued outcome variable, Y}, is observed for j = 1...J different units during
t=1...T periods[] The panel is short (in that 7" << J). We collect the j-th unit outcome
variables in the vector Y; = (Yj1,...,Y;7)". We use Y; to denote the sum Zthl Y, across
all periods for unit j.

For each unit we observe K time-varying covariates (X;; € R¥) and L time-invariant
covariates (Z; € RL). We assume there is also a vector of M unobserved time-invariant
covariates (W; € RM).

We stack the time-invariant covariates in the column vector X; = (X jTl, .

.. ,XJTT)T. Thus,
X collects all the covariates of unit j over the different time periods ¢ = 1,...,7. We
sometimes use X, to denote the time series of covariate k for unit j. For simplicity of
notation, we assume that all covariates have a discrete distribution. Sometimes we write
(W;,X;,Y;,Z;) to denote the vector that contains observed and unobserved variables, even
though the dimensions do not match. We also do this for other vectors whenever it simplifies

notation.

2.2 Assumptions

Assumption 1: The random vector (W;,X;,Y;, Z;) is i.i.d. across units. In addition,
P(Y;|W;,X;, Z;) ~ Poisson(ajAjr), A = exp(XjTtﬁ + Zijy), aj = exp (VVjTé) , (1)
and (Yj1,...,Yjr) are i.i.d. across time, conditional on (W;, X, Z;).
Assumption 1 readily implies

E[Y;:|W;, X;, Z;] = ajexp(X;, 8+ Z 7). (2)

"See |Cameron and Trivedi| (2015, Chapter 8) for a review of models for count panel data.



Thus, the unobserved characteristics simply change the scale of the conditional mean. A key
assumption is that after conditioning on the unobserved characteristics, only the regressors
at time t—and the time-invariant regressors—affect the conditional mean in that period.
This can be interpreted as a typical strict exogeneity assumption. Assumption 1 also implies
that the covariates of each unit are i.i.d. draws from some distribution, but the formulation
allows for the covariates of each unit to be correlated over time. We assume a; > 0 for every
j. This is a normalization.

It is well known that a short count panel enables consistent estimation of 3 as the cross-
sectional observations grow large, without restricting the joint distribution of (W}, X;, Zj).ﬁ
It is also well-known that the estimation of v requires additional “random-effects” type as-

sumptions (Honoré and Kesina, [2017). We work under the following assumption:

Assumption 2: E[o;|Z;] is strictly positive and does not depend on Z;.

The estimation of the parameters 8 and ~+ in the model under Assumptions 1 and 2
is described in Honoré and Kesina (2017)@ We provide further details in Appendix B and

implement the estimators using our own suite of Matlab functions.

3 Agency-specific counterfactuals

In this section we define the counterfactuals of interest. Our goal is to estimate the expected
outcome of unit j at time ¢, but replacing the unobserved characteristics of unit j by those
of unit j. With the application to police use of lethal force in mind, we will refer to units

as agencies and periods as years.

8See, for instance, Cameron and Trivedi| (2015) Section 8.3.4.

9Honoré and Kesina (2017) compare their estimators of 8 and v to a correlated random effects (CRE)
estimator which includes the average of the time-varying explanatory variables as covariates in a random
effects Poisson estimator (assuming the random effects have a Gamma distribution). Their simulations
suggest that that the CRE estimator is biased for the coefficients of the time-varying variables, and the bias
does not change much with the sample size.



Definition: Let z; be a vector of K time-varying covariates. Let z be vector of L time-
invariant covariates. Given vectors of observed characteristics = (z],...,25)" and z, the

(x, z, j')-counterfactual of agency j at time ¢ is defined as

0:(5; 2, 2,5) = B[Y;| Wy, m1,. .., 27, 2] = ayexp(2’y + 2] 8), where aj = exp (5TWj/) i
(3)
In the context of our empirical application, this is the expected number of homicides for
agency j, provided that this agency has the observed covariates (z,z) and the unobserved

characteristics of agency 7.

Consistent estimation of is challenging. The short panel means there is limited time-
series variation to estimate the effect of unobserved characteristics on the conditional mean.
Thus, instead of insisting on consistent estimation of we will focus on obtaining its best

estimator, @\f( j;x, z,7"), under squared-loss minimization
(0:(1% xz,z, ],) - et(]v xz, Zj,))2

Let D denote the data available from all units (outcome variables, time-varying covariates
and time-invarying covariates). As usual, we define an estimator 5,5( J,x,z,7") for 0,(j,x,7)
as a mapping from the data D at hand to the real line.

We would like to evaluate the performance of the estimator é’\t( J,x,j') in repeated samples;
this means that we take new draws from the data, jointly with the unobserved characteristics

of agency j’, and for each new draw compute the squared distance

(6:G3.2.5) = 0.2,



for fixed values of x and z. We then integrate over the joint distribution of (D, aj/)m
The following result is a generalization of the results of Robbins (1956|) for Poisson Re-

gression, to the set-up of a Poisson model for count panel data.

Proposition: Suppose the joint distribution of (W}, X;, Z;) and the parameters (/3,~) are

known. Under Assumption 1, the best estimator of 8,(j; x, z, j') under squared-loss is
0;(j;2,2,7") = ElagXy, Yy, Zy]-exp (z/ 8 +7"2). (6)

Moreover,

Ela; X0, Y, Z] = Yyl Py 1%y, Zy) (7)
J 2 7<) — s
exp(vT Zy) Yoy exp(X},8)  P(Y[Xy, Zy)

where Y ; = Zthl Y;: represents the total counts associated to unit j in the time series.

PROOF: See Appendix. [

The proof of the proposition above has two parts. The first part is a straightforward
application of the decision-theoretic optimality of the posterior mean under quadratic loss.
When (3,7) are known and (z,z) are fixed, the counterfactual of interest is proportional
to ajr. If we view aj as a random variable, its best estimator under quadratic loss is the

posterior mean of a; given the data. The independence assumption implies that the only

10We do this by averaging first over the distribution of D—conditional on aj—and then over the marginal
distribution of ;. In light of Assumption 1, we can write the joint distribution of D conditional on «; as

P(Xjr, Yy, Zjlag) - P(D—j0), (4)

where D_,, denotes all the data except for the the homicides and covariates of agency j’. Thus, algebra
shows that the average squared error can be written as

/ ( 3 (0225 — et(j,z,z,j’))QP(Xj/,Yj/,Zj,aj,)P(D_j/)) dP(cjr) (5)
(

X1, Y0, Z;,D_;)



relevant part of the data are the outcomes and covariates of unit j'.

The second part of the result follows Robbins (1956 and expresses the posterior mean
of the unobserved unit-specific effects in terms of the marginal distribution of outcomes and
covariates. The Empirical Bayes version of (@ replaces unknown quantities—g’s, v’s and
P(Y;|X;, Z;)—by plug-in estimators.

Our approach makes no parametric assumptions about the joint distribution of observable
and unobservable characteristics. This is possible because we have postulated a parametric
model for the conditional distribution of outcomes given observables and unobservables.

The panel data version of Robbins’ formula in Equation (@ requires plug-in estimators
of the ratio P(Y; + 1|X;, Z;)/P(Y;|X;,Z;). In Robbins (1956)’s original cross-sectional
formulation of the problem, the ratio is estimated by relative frequency counts. It is well-
known that the classical solution performs poorly without “smoothing” (Brown, Greenshtein
and Ritov, 2013).E| One alternative is to estimate these conditional probabilities using
Bayesian semiparametric methods, which we leave for future Work.E

We will argue that in the empirical application we consider, it will make sense to assume
P(Y; + 11X, Z;)/P(Y;|X;, Z;) = 1, provided we focus on counterfactuals involving large
police departments (such as the New York City Police Department). In the case of the New
York City Police Department, the implicit assumption will then be that the probability of
observing 55 lethal encounters over 2013-2018—conditional on observed covariates—is the

same as observing 56. We report counterfactuals for the ten largest departments (in terms

10One of the proposals in [Brown, Greenshtein and Ritov| (2013)) is to assume that the observed outcomes
have a Poisson measurement error. This leads to a formula similar to that derived by Robbins but using
a smoothed estimator for the marginal probabilities. It would be interesting to adjust their suggested
estimators to this context, perhaps by estimating each “cell” defined by the values of X; separately. An
important challenge in implementing this approach is that cells obtained by conditioning on the covariates
may contain very few observations (just think of how many LEAs have the same covariates as the New York
Police Department).

12For example, (Carota and Parmigiani| (2002) have proposed a Bayesian semiparametric model for regres-
sion problems in which the outcome variable is a count. Their approach is relevant for data sets in which the
total number of occurrences in each cell defined by the values of X; is of moderate size. Broadly speaking,
the idea is to model the cumulative distribution of Y;|X; as a Dirichlet Process Mixture. The Dirichlet
Process is characterized by a “mean” conditional distribution and a scalar “dispersion” parameter. Both
the mean conditional distribution and the scalar dispersion parameters are specified as being a parametric
function of the covariates.

10



of population served) under this assumption.

3.1 Confidence Intervals for Estimated Counterfactuals

~

How do we quantify the uncertainty in the counterfactual parameter, 0;(j;x, j'), suggested

in this paper? Our estimated counterfactual is

Y+1 P+ 10X, 2) .

0;(7: X;.5) = — == exp (XIBJF ZW) .
exp(Z)7) Y exp(X),B8)  P(Y ;X0 Zy) ’ ’

The uncertainty in this counterfactual comes from the fact that we are using the data to
replace population parameters (3, 7, and P(Y;|X;)) by their sample counterparts (3, ~,
@(Yj |X)). Thus, we can account for the uncertainty in the estimated counterfactual by delta-
method/bootstrap arguments, provided we treat the remaining aspects of the counterfactual
(such as X, )7] and Z;) as fixed. Though this idea is quite natural, the only similar approach
we found in the literature is [Ignatiadis and Wager| (2019), who rely on projection methods
rather than bootstrap/delta-method arguments.

To give a concrete idea of how the approach works in our case. Suppose that it is known

that
P(Y; +11X;)
P(Y 5 |X;)

Under this assumption, it is straightforward to quantify the uncertainty in the estimation
of @*(j;x, j"). To do this, we first estimate B\ and 7 by excluding observations j and 7.
Because all the units are independent, excluding j and j’ guarantees that one can condition
on (Y;,X;,Y;,X,) without having to take into account possible changes on the distribu-
tion of the estimated parameters. The counterfactual can then be viewed-—conditional on
(Y;,X;,Y;,X,)—as a differentiable function of 5 and 7. We can approximate the distri-

bution

~

0 (72, 5)|(Y 5, Xy, Y 5, X5).

11



using the delta method or resampling procedures like the bootstrap. In the paper we consider
two such approaches. The first one, samples directly from the estimated asymptotic distri-
bution of 3 and 7. The second one is a conventional nonparametric bootstrap that samples
from the empirical distribution of (X, Y}, Z;) (excluding the agencies j and j'). The tables
reported in the main body of the paper use the former approach, and in the appendix we
report the latter.

ALTERNATIVE APPROACHES TO QUANTIFY UNCERTAINTY: The counterfactual param-
eter of interest is a function of the agency-specific effect, a. It is then possible to construct
Empirical Bayes confidence intervals for o under parametric assumptions on the conditional
distribution of a;|X;—which we want to avoid— see |Carlin and Louis| (2000), Chapter 3.5.2.
The construction of confidence intervals without strong parametric assumptions on the dis-
tribution of the unobserved effects is a more delicate matter. Recently, |Armstrong, Kolesar
and Plagborg-Mgller| (2020]) suggest a robust Empirical Bayes confidence interval for unob-
served effects in the Gaussian means problem. [Koenker| (2020)) approaches the same problem
using the non-parametric methods of [Kiefer and Wolfowitz| (1956) and Efron et al.| (2019).
It would be interesting to adapt these procedures to the construction of Empirical Bayes

confidence intervals for counterfactual parameters.

4 Data

We have constructed a comprehensive agency-level data set to compute counterfactuals for
police homicides. These data include a large number of law enforcement agencies (not
only those that have been associated with police homicides), along with several agency and
population attributes. The data set is constructed in a series of steps as follows.

Our source for the homicide data is Mapping Police Violence (MPV), which is a list of

victims of lethal force along with the agency responsible (if known)r_g] We use MPV rather

13There are three other widely used and publicly available data sources on police homicides: the Guardian’s
Counted Project covering 2015-16, the Washington Post’s Fatal Force project dating back to 2015 for firearm

12



than other listings of police homicides, because this data includes the Originating Agency
Identifier (ORI) code for the agency (or agencies) involved in each incident. This is a nine-
character identifier assigned to each agency that has met established qualifying criteria for a
fingerprint based background check, and can be used to easily match incidents with agencies
in several standard official data sets[/]

For the period 2013-2018, there are a total of 6,547 victims across all incidents. Of these
a total of 5,885 homicides arise from an on-duty encounter involving intentional use of deadly
force and a single, identified agency. We restrict attention to this subset of lethal encounters,
but refine it further by imposing two additional requirements. First, the agency involved
must have a known ORI code. Second, we require that the agency serve a well-defined
population in the last available wave of the Law Enforcement Agency Identifiers Crosswalk
(LEAIC). This excludes incidents involving federal organizations such as the FBI or DEA, as
well as state troopers, highway patrols, transit police, and several other non-local agenciesﬂ
We also exclude sheriff’s offices, even though some of these are large and are associated with
defined local populations, since the nature of their functions varies quite considerably.

After matching, we have 13,397 police departments responsible for 3,877 homicides, and

our analysis focuses exclusively on these.m The addition of covariates further reduces cov-

deaths (Finch et al} [2019)), and Fatal Encounters. [Edwards, Lee and Espositol (2019)) have recently used the
Fatal Encounters data to estimate the risks faced by different social groups of being killed by police in the
United States and [Schwartz and Jahn! (2020) have used it to describe the distribution of police homicides
across metropolitan areas.

141n a few cases the ORI code listed in the database matches to agencies with zero officers or population
served, and needs to be substituted—this is the case for the primary police departments serving Jacksonville
and Indianapolis for example. There is also some controversy about coverage and classification in the MPV
data; see Nix and Lozada| (2021) for a critique and |Bor et al.| (2020)) for a reply. This controversy does not
pertain to our analysis. It concerns 93 incidents, allegedly misclassified with respect to weapon possession
by victims, or the presence of mental health crises, neither of which are variables that we use. In addition, a
number of these incidents are excluded from our analysis because they do not meet our criteria of involving
deliberate use of force by on-duty officers.

15Many of these agencies are tied to police homicides, some of them within the jurisdictions that agencies
in our data set have primary responsibility for.

16There are more than 28,000 complete agencies in the LEAIC data, but these include many special
jurisdictions that do not serve well-defined populations, such as those associated with parks and recreation,
transportation systems, and public buildings and facilities. We focus only on local police departments,
which are easily associated with well-defined and mutually exclusive populations. Local police departments
account for only around 62% of police homicides, and many of the homicides associated with other agencies
occur within the jurisdictions of local police departments. Moreover, local police departments sometimes kill

13



erage as we describe next.

4.1 Additional Covariates

In order to obtain further covariates we use two data sets that are part of the Uniform
Crime Reporting (UCR) program—the Law Enforcement Officers Killed and Assaulted
(UCR-LEOKA) database, and the the Offenses Known to Law Enforcement (UCR-OKLE)
database['"] In addition, we draw on the 2018 American Community Survey (ACS) from
the Census Bureau, and, finally, data on mortality by county from the Center for Disease
Control and Prevention (CDC). We next describe which variables are extracted from each
source, and also how many agencies we lose due to data unavailability.

Officers per 1,000 population served: This variable is obtained from the UCR-LEOKA
database, after matching on ORI. We use the 2012 wave for consistency with the crosswalk
data. For this year, we find information on the size of the force (number of sworn officers) and
find this to be positive for 12,012 out of the 13,397 police departments@ These departments
account for 3,856 out of the 3,877 homicides.m

Murders per 100,000 population served: This variable is obtained from UCR-OKLE and
uses the total murders (and non-negligent manslaughters) reported by the agency, annually
for 2013-2018. We include only those police departments with complete reports for all
months in the period considered, and use the time-varying values of the population served,
also extracted from the UCR-OKLE data. This leaves us with 7,732 agencies, accounting

for 3,542 homicides.

civilians outside their jurisdictions—for instance as the culmination of a high-speed chase.

17Our sources for the UCR data are the concatenated files constructed by Kaplan| (2021 a,b).

18 As |Chalfin and McCrary| (2018) point out, even within a single year, the number of officers in a police
department cannot be measured without error. Large departments especially do not time new hires to match
exactly with retirements, resignations, and other departures. Even within the set of people on the payroll at
any moment, some are usually unavailable for service because they are on terminal leave, or in the training
academy, or on vacation or personal leave, for instance. Departments also differ in the number of annual
hours officers are expected to work.

9This data set also includes counts of officers killed (by felony or accident) and assaulted (with and
without injury). In the Appendix we add officers assaulted to our main specification and show that our
results barely change.

14



Poverty, demographics, and land area: We add the share of the population living in
poverty, and the share of the population that identifies as (non-Hispanic) Black using data
from the 2018 five-year ACS. This is challenging because police departments do not corre-
spond exactly to census geographies in a consistent way. We adopt a sequential procedure
using data on census places, county subdivisions, and counties as follows. We first see if an
agency matches a census place, and assign that data to the agency if it does. If it corre-
sponds to no census place, we check whether it matches a county subdivision, and assign
data accordingly if it does. For agencies still unmatched, we see whether they are county
departments. If so, the county data are assigned to the agency, after subtracting the data
that has already been assigned to other agencies in the same county.

A similar procedure is used to assign land area (measured in square km) to agencies,
based on 2018 ACS data. Here we sum all land areas corresponding to the census place
associated with each agency. If the agency does not correspond to a census place, we repeat
the procedure using county subdivision rather than place. This leaves the county agencies,
and for these we assign county land areas, after first subtracting the total land area already
assigned to other agencies in the same county.

Most agencies are successfully matched with census data in this way. We are left with
7,667 police departments that account for 3,534 homicides.

Garner and LEOBR dummies: Under the current federal civil standard, established in
the 1985 Tennessee v. Garner case, “a police officer may use deadly force to prevent the
escape of a fleeing suspect only if the officer has a good-faith belief that the suspect poses
a significant threat of death or serious physical injury to the officer or others.” That is, an
officer cannot simply shoot a fleeing suspect who poses no immediate danger. Some states
have adopted this standard as part of criminal law (or had already done so prior to the federal
ruling), while others continue to operate under a more permissive common law standard that
gives police greater latitude in using deadly force. [Flanders and Welling (2015) provide a

classification of states into those that have adopted Garner or Garner-like principles in
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criminal matters and those that have not done so. We use this to create a dummy variable
assigned to each agency, based on the state in which it is located.m Finally, to capture the
power of police unions in protecting officers from allegations of misconduct, we use Rushin
(2016)) to assign to each agency a variable indicating whether it is in a jurisdiction with a
Law Enforcement Officer Bill of Rights (LEOBR)F|

Gun Death Rate: Using the CDC data on mortality by county, we attach to each agency
the number of gun deaths per 100,000 population in the county in which it is located. We
include all deaths (including suicides) resulting from firearm discharges, except for those
attributed to law enforcement actions (since this is our dependent variable). This variable
is a measure of gun prevalence at the county level. We use all deaths from 1999-2016. For
privacy reasons, the CDC suppresses data for counties with ten or fewer gun deaths over
this period, and we drop all agencies in such counties.

This gives 7,609 police departments, accounting for a total of 3,533 homicides. In estimat-
ing the model, we restrict attention to agencies in the continental United States, excluding
22 agencies in Alaska and 2 in Hawaii, collectively responsible for 29 homicides. These states
are unusual in several respects, particularly in the vast amounts of land area covered by their
agencies. Of the five agencies in our data with the largest land area, four are in Alaska and
one in Hawaii. The very largest—Alaska’s North Slope Borough Police Department—covers
almost 230,000 square kilometers, an order of magnitude greater than the 10,000 square
kilometers covered by the second largest, Hawaii County Police Department. Much of this
is unpopulated public land, and including these agencies would distort any estimates involv-
ing population density. Thus, the final data set used for estimation consists of 7,585 police

departments that account for 3,504 homicides from 2013 to 2018.

20The status of Montana is listed as unclear in [Flanders and Welling| (2015) and we pool this with the
non-Garner states.

21This is a state level dummy, with the exception of Texas, which has a bill of rights applicable only to
agencies in cities with more than 1.5 million people. In our data this applies only to the Houston Police
Department.
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5 Results

5.1 Estimation of g and v

We start by estimating the parameters (/3,v) in model :
P(Y;|W;, X, Z;) ~ Poisson(ajAjr), A = exp(XjTtﬂ + ZjT’y), aj = exp (I/VjTé) ,

where we further assume (Yj1,...,Y,r) are i.i.d. across time, conditional on (W}, X;, Z;).

Our only time-varying variable (Xj;) is murders per 100,000 population. Our time-
invariant variables (Z;) are as follows: the natural logarithm of population (in millions);
officers per 1,000 population; the gun death rate; the proportion of population with income
below the poverty level; proportion of population who are (non-Hispanic) Black; and land
area (in square kilometers) per million population. We also include Garner and LEOBR
dummies. See Section 4] for details on how these variables are constructed.

Since we are interested in counterfactuals involving the 10 largest police departments in
terms of population served, we leave them out in our estimation procedure. This procedure
is described below.

ESTIMATION OF [3: The standard procedure for estimating # in model uses the

sample moment conditions:

J T T
1 1 exp(X;0) o
53 (33 (e i) ) <o 8
J j=1 (T =1 =1 €XP (XJTt )
which can be motivated as a Generalized Method of Moments estimator using the mean in

or as a conditional (quasi)-Maximum Likelihood estimator obtained from the Poisson

likelihood 22

22G8ee Section 8.3.4 in |Cameron and Trivedi| (2015) and Section 18.7.4 in Wooldridge| (2010). Equation
implies:

(Yi1, ..., Yr) |y, X, Z;,Y; ~ Multinomial (YJ,

J

Aj1 AjT ] )
Zthl )‘jt Zthl )‘jt

Writing the negative log-likelihood of the multinomial and taking derivatives with respect to 8 gives .
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There are two important remarks about Equation . First, these moment conditions
do not depend on 7. Second, the estimation of 3 only depends on the units for which Y;; > 0
for some ¢. In the context of our example, this means that only the 1179 agencies with some
lethal encounter over 2013-2018 are used to estimate the slope coefficients of time-varying
parameters.

ESTIMATION OF : We follow Honoré and Kesina (2017) and exploit Assumption 2. The

idea is that if § were known, the law of iterated expectations would imply

Y

E = J
D=1 €XP (XJTt )

7.

J

= E[a;|Z;] exp (Z].T’y) : (9)

Since E[ay|Z;] is assumed to be independent of Z; (and different from zero), equation (9)

defines a nonlinear least-squares estimation problem where we can use the moment conditions

<=

J —
Y} T T 111
—exp(y + Z; 7)) exp(v + Z.; v)[1,Z;]' = 0. (10)
2 (o f 7

The full estimation routine then proceeds as follows:
1. Equation is used to estimate (. Denote the resulting estimator B )

2. Plug-in B\ in Equation , and use the resulting moment condition to estimate ~.

Denote the resulting estimator as 7.

The estimators can be viewed as GMM estimators using the moment conditions and
. Standard errors can be obtained analytically following the formulae in Section 6.3
of Newey and McFadden| (1994). We compute the estimators and their standard errors
using our own suite of Matlab functions, provided in the GitHub repository with replication
materials [

Table [I| presents the estimated values of (3, ), with standard errors clustered by agency.

Zhttps://github.com/jm4474/EmpiricalBayesCounterfactuals
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Table 1: Coefficient Estimates

Coeflicient Standard Errors

Murder per pop. (in hundred thousands) 0.005 0.008
Log of Avg. pop. (in millions) 1.192 0.104
Officers per pop. (in thousands) 0.012 0.01
Gun Death Rate (%) 0.049 0.017
Share in Poverty (%) 0.04 0.014
Share Black (%) -0.024 0.008
Garner -0.031 0.242
LEOBR -0.05 0.217

Land Area (sq. km.) per pop. (in millions) 1.0231e-05 1.9313e-06

The coefficient on log-population is slightly above one. This means that the conditional
mean of lethal encounters scales almost multiplicatively in this variable.

The coefficient on officers per population is positive, but is not statistically different from
zero at the 90%-level. Moreover, its magnitude is relatively small. To illustrate this point,
consider the recent proposal to reduce the size of the New York City Police department by
approximately 2,000 officers (Koeza and Lu, [2020). Such a reduction would decrease the
officer per population ratio to about 4, from its current value of 4.16. The estimated effect of
this change would be a reduction in lethal encounters of approximately (0.012) x 100 x 0.16 ~
0.19%. For the New York City Police Department this is a reduction of 55 x 0.19% ~ 0.1 in
lethal encounters over 2013-2018, or one lethal encounter every 60 yearsE[]

The magnitude of the coefficient on the gun death rate is interesting. Reducing the
gun death rate by one percentage point reduces lethal encounters by about 4.9%. This
number is actually quite large, given recent findings in the literature suggesting that required
background checks on handgun purchases from licensed firearm dealers—accompanied by a

2-7 days waiting period to allow sufficient time for the check—can reduce gun homicides

24Changes in the size of a police department have qualitative as well as quantitative implications. Certain
tasks, such as responding to calls associated with homelessness, mental health issues, nuisance complaints,
or conflict in schools can be shifted to other agencies, thus altering the nature of police-civilian contact.
Behavioral changes among officers and the population they are expected to serve are also likely to follow
on the heels of a contraction. A statistical model such as that we have constructed here is ill-equipped to
examine the consequences of such qualitative changes. Nevertheless, our framework allows us to conduct a
counterfactual analysis of limited scope.
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by 17% (Luca, Malhotra and Poliquin) 2017)). Our gun death covariate includes all deaths
(including suicides) resulting from firearm discharges, and we estimate that only 37% of
firearm deaths are homicides. Thus, the suggested changes on background checks could
reduce lethal encounters by about 31%.

Regarding the demographic variables, there are two important remarks. First, the poverty
rate fell by 2.3 percentage points between January-February 2020 and April-May 2020 (from
10.9% to 8.6%), and [Han, Meyer and Sullivan (2020) estimate that the government programs
expanded or enacted at this time can more than account for the full drop that occurred. Our
estimates suggest that this reduction in poverty could translate into a reduction of lethal
encounters of around 9% | Similarly, a study by the Center on Budget and Policy Priorities
(Trisi and Saenz, 2019) suggests that the poverty rate in the United States has fallen from
26.0 percent in 1967 to 14.4 percent in 2017, “largely due to the growing effectiveness of
economic security programs such as Social Security, food assistance, and tax credits for
working families.” If we assume the rate of reduction in poverty was constant over the years
(although, most likely, most of the reduction occurred before 1975), the annualized rate of
poverty reduction attributed to economic security programs is about 1.17%. According to
our estimates, such a reduction in poverty is associated with approximately 4.68% fewer
lethal encounters in a given year. The average yearly number of lethal encounters in our
data is 3,533/6 ~ 589. Thus, feasible reductions in the poverty rate translate into about
28 fewer lethal encounters per year in the limited set of agencies that we consider. All this
suggests that government programs, through their effects on poverty, can contribute to a
meaningful reduction in the incidence of deadly force.

Second, the coefficient on the Black population share is negative and significant at con-
ventional levels. This result does not imply that Black civilians are less likely to be killed

by police, either conditionally or unconditionally. Recall that the dependent variable is the

25This estimate could actually be conservative, given that the coronavirus relief package that Congress
passed in December 2020 likely resulted in a 4.2 percentage point drop in the (Supplemental Poverty Measure)
poverty rate in January 2021 (Parolin and Curran, [2021)).
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number of victims of all groups. Conditional on the other covariates (some of which like
murder and poverty are positively correlated with the Black population share), jurisdictions
with more Black residents have police departments that kill fewer civilians. This result is
consistent with the observation that the states with the highest rates of police homicides
per capita—New Mexico, Arizona, Oklahoma, Nevada, Colorado, and West Virginia in our
data—have relatively small Black populations, with none of them above the median state
on this dimension. Conversely, the states with the largest Black populations—Mississippi,
Georgia, Louisiana, Maryland, and South Carolina—have rates of per capita police homicide
well below those of the deadliest statesPf

The relationship between population sparsity and police homicide is complex. On the one
hand, dense populations of civilians are more likely to interact with one another and engage
in disputes that escalate to a point where fatal police involvement occurs. We partially
control for this effect by including the murder variable (murders are highly concentrated in
urban areas). On the other hand, in sparsely populated communities police officers may
be more likely to confront dangerous situations alone because backup is further away and
because they might patrol without partners. Solitary police may fear for their safety more.
Specialized services, whether within the police department or outside it (for instance, mental
health professionals) may be further from the scene of the confrontation (or absent entirely
because the sparsity keeps them from being effective). Hospitals are likely to be further away
too, and so some shootings that would not be fatal in more densely populated communities
may turn fatal in sparsely populated communities (realizing this for themselves may also
induce police to be quicker to shoot).

All in all, our data indicate that the second effect is stronger on average: more killings
occur in sparser places, ceteris paribus. While the coefficient is statistically significant, it

is not economically significant. Moreover, the size and significance of the results are not

26See |O’Flaherty and Sethi (2019) for a deeper discussion of the correlation between deadly force and
population composition at the state level. We will examine racial disparities in police killings in a companion

paper.
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completely robust to changes in specification and to the treatment of Alaska.

5.2 Pairwise Agency Comparisons

For any pair of agencies j and j' we can ask the following counterfactual question: To what
extent would agency j’s lethal encounters have been different if it had unobserved agency-
specific characteristics o (instead of «;), without any change in its own covariates X,;? That
is, what would be the consequence for the agency j lethal encounters of replacing agency
j’s unobserved characteristics with those of agency j’, leaving all observed characteristics

intact?

Table 2: Counterfactual police homicides for 2013-2018: Unobserved Covariates

Phoenix Las Vegas Dallas Philadelphia San Diego Chicago Los Angeles Houston San Antonio New York
Phoenix 93 [59,76] [41,95] (33,110] [45,74] [40,77] [41,58] [40,59] (33,68] [11,32]
Las Vegas [64,83] 51 [34,70] [27,81] [37,54] [33,57] [30,48] [32,44] (26,53] (8,25]
Dallas [34,78] [25,53] 33 [25,43] [22,45] [21,44] [17,43] [19,38] [21,31] [7,14]
Philadelphia [25,82] [19,56] [23,40] 28 [17,45] [18,40] [13,43] [15,37] [15,36] (6,13]
San Diego [34,57] [26,38] [20,42] [17,45] 26 [21,32] [18,30] [19,27] [15,33] (5,14]
Chicago [78,150] (58,100] [49,106] [46,103] [54,82] 63 [41,78] [48,64] (36,85] [13,35]
Los Angeles  [185,263] [124,199] [91,225] [77,249] [103,175] [93,178] 113 [91,141] [75,162] [27,69]
Houston [83,124] [61,85] [47,95] [41,102] [53,72] [52,69] [42,65] 51 (35,74] [12,32]
San Antonio [50,102] [35,73] [39,57] [29,70] [30,66] [27,64] [25,55] [25,53] 35 [10,20]
New York [162,499] [119,358] [133,278 [120,283 109,282] [103,276 [93,233] (92,234 100,210 55
Totals [850,1445] [623,1021] [559,963 [478,1043 552,843] [515,840 [472,712] (483,684 435,727]  [161,298]

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters). Off-diagonal entries are 90%
confidence intervals for counterfactual values of lethal encounters, obtained by replacing the posterior expectation
of o for the agency in the row with that of the agency in the column, while assuming no change in observed

covariates. Agencies are listed in decreasing order by their estimated value of «;.

Table[2] provides an answer to the question about counterfactuals for the ten largest police
departments by population served, ordered by the size of the estimated posterior mean of
a;, from largest to smallest. The diagonal elements in the table are the actual number
of lethal encounters, summed over the period 2013-18, while the off diagonal elements are
90% confidence intervals for the counterfactuals. The confidence intervals are constructed as
described in Section [3.1} using 1,000 samples from the estimated asymptotic distribution of
(B ,7). Specifically, each row tells us the counterfactual number of lethal encounters that a
given agency would have been responsible for if there were no change in its covariates, but

if it had the unobserved characteristics of the agency identified in the column.

22



Phoenix and New York are on opposite ends of the table. So, for example, the Phoenix
Police Department had 93 lethal encounters over the six year period, but we can say with
90% confidence that they would have been responsible for only [11,32] if they had the un-
observables of the New York City Police Department. The uncertainty here comes from the
fact that (3, ) are estimated from the panel on lethal encounters. The last column of Table
suggests that giving the unobservables of the New York City Police Department to each
of the ten largest agencies in the country could reduce lethal encounters in all of them.

In fact, if one adds together all of the diagonal elements, the sum is 548, which is the total
number of lethal encounters for this set of departments over the six year period considered.
The counterfactual lethal encounters for this sum are reported at the bottom of the table.
If all agencies had the unobserved characteristics of the New York City Police Department,
the lethal encounters would be in [161,298]. If all agencies had the Phoenix unobserved
covariates instead, the range would be [850,1445]. These are substantial effects that suggest
considerable scope for learning from the best practices (and avoiding the worst) of other
agencies.

Table |3| below complements the results above by considering changes to some of the
agencies’ observed covariates. In particular, we consider changes in variables that we believe
can be affected by reforms to policing: officers per thousand population, the gun death rate,
the poverty share, the Garner statutes, and the presence or absence of LEOBR.

Phoenix and New York remain at opposite ends of the table. Interestingly, in 2018 the
New York Times published the article “How Phoenixz Fxplains a Rise in Police Violence:
It’s the Ciwvilians’ Fault” (Oppel, 2018). A few days later, the Phoenix Law Enforcement
Association issued a statement citing facts that make law enforcement in Phoenix particu-
larly challenging?"| The statement described the city as “violent and out of control”. The
estimated values suggest that indeed the Phoenix Police Department has to enforce the law

in a rather challenging environment. According to the first column of Table [3] replacing

2Thttps://azplea.com/2018/12/chief-williams-and-plea-respond-to-nyt-hit-piece/
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Table 3: Counterfactual police homicides for 2013-2018: Observed Covariates

Phoenix San Antonio Las Vegas Los Angeles Houston Dallas San Diego Chicago Philadelphia New York

Phoenix 93 [65,83] [65,84] [61,82] [50,78]  [46,76] [40,66]  [36,71] [23,66]  [21,57]
San Antonio  [41,52] 35  [32,41] [33,36]  [26,36]  [24,34] [22,29]  [19,32] [12,30]  [12,25]
Las Vegas [58,75] [46,59] 51 [43,58]  [38,53]  [34,51] [29,44]  [27,46] [17,44]  [16,38]
Los Angeles  [131,175] [115,123]  [103,137] 113 [88,116] [81,111] [72,95] [63,103] [42,95]  [39,80]
Houston [62,97] [52,71]  [51,72] [51,67] 51 [47,50] [36,50]  [37,47] [24,44]  [21,39]
Dallas [42,69] [35,51]  [35,51] [35,48]  [35,37] 33 [2535]  [26,32] [17,30]  [15,27]
San Diego [38,63] [33,45]  [32,48] [32,43]  [28,39]  [26,37] 26 [21,33] (15,30]  [14,25]
Chicago 85,169] [72,124]  [72,123] [71,115]  [71,901]  [69,83] [53,81] 63 [41,63]  [36,56]
Philadelphia  [41,117] [35,85]  [34,86] [35,78]  [34,63]  [33,57] [26,54]  [30,45] 28 [22,31]
New York (92,249 [81,175]  [76,183 [80,162] [74,136] [72,124]  [62,108] [64,100 53,75 55
Totals [697,1148 [593,815] [570,851 [587,760] [554,630] [522,580] [424,543] [418532 [278,497] [257,426]

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters). Off-diagonal entries are 90%
confidence intervals for counterfactual values of lethal encounters, obtained by replacing Officers per 1k population,
Gun Death Rate, Share in Poverty, Garner, and LEOBR of the agency in the row with that of the agency in the
column. Agencies are listed in decreasing order by the estimated effect of these covariates, so entries decline as
one reads across rows.

key observed covariates of each agency by those of the Phoenix Police Department would
increase lethal encounters in each of the agencies under consideration. However, the results
do not suggest that the scale of deadly force in Phoenix can simply be attributed to the en-
vironment faced by officers. The first column in Table [2[ suggest that unobserved covariates
also play an important role in explaining the large numbers of lethal encounters associated
with the Phoenix Police Department.@

We also note that while the Phoenix Police Department and the New York City Police
Department have the same ranking in Tables [2] and [3| other departments do not. The
San Antonio, Los Angeles, and Houston police departments seem to combine “favorable”
unobservables with “unfavorable” observables, while the opposite is true for the Philadelphia
and Dallas police departments.

To finalize this section Table [] considers counterfactuals where we change both unob-
served covariates and observed covariates (in particular, those considered in Table [3). This
table suggests that the observed characteristics of some agencies—along with their unob-
served covariates—offer a path towards a significant reduction in lethal encounters. Specifi-

cally, if all agencies had the observed and unobserved characteristics of the New York City

28Moreover, the environment faced by officers of the Phoenix Police Department might as well be endoge-
nous to the operation and configuration of the agency.
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Police Department the lethal encounters would be reduced from 548 to be in [115,189]. This

is a reduction of at least 359 lethal encounters over a six year period.

Table 4: Counterfactual police homicides for 2013-2018: Unobserved and Observed

Phoenix Las Vegas Dallas San Antonio Los Angeles Houston San Diego Chicago Philadelphia New York

Phoenix 93  [52,53]  [28,55] [26,53] [31,44]  [30,35] [29,31] [25,35] [18,36] [4,11]
Las Vegas 92,94] 51 [27,55] [26,53] [31,44]  [30,35] [29,34]  [25,35] [17,36] [4,11]
Dallas [58,115]  [32,64] 33 (30,34] (22,47 [20,40] (19,39 [17,38] [20,24] [4,9]
San Antonio  [64,130]  [36,73]  [36,40] 35 [25,52]  [22,45] [22,43]  [19,43] [21,28] [5,9]
Los Angeles  [246,346] [136,194]  [82,176] [79,166] 113 [88,114]  [81,118] [76,112] [52,114]  [14,32]
Houston (140,163  [78,91]  [44,89] [41,86] [52,67] 51  [44,58]  [43,53] 28,57 [7,18]
San Diego [75,87)  [42,49]  [24,48] [22,45] [26,38]  [24,32] 26 [20,33] [15,32] [4,10]
Chicago [171,240]  [96,133]  [57,124] [54,121] [65,96]  [63,78] [53,86] 63 38,78] [9,25]
Philadelphia  [76,155]  [42,87]  [41,50] [37,49] [29,64]  [26,53] [25,53]  [24,49] 28 [5,12]
New York  [460,1241] [255,695] [219,451 217,418 201,442] [163,413] [154,413] [142,395 140,299 55
Totals [1543,2558] [860,1435] [649,1045 626,968 647,040] [548,864] [512,873] [471,825 112,683] [115,189)]

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters). Off-diagonal entries are 90%
confidence intervals for counterfactual values of lethal encounters, obtained by replacing Officers per 1k population,
Gun Death Rate, Share in Poverty, Garner, LEOBR, and the posterior expectation of o; of the agency in the row
with that of the agency in the column. Agencies are listed in decreasing order by the estimated effect of these

covariates, so entries decline as one reads across rows.

A natural question regarding the results above concerns the relative role of observed and
unobserved covariates in accounting for the counterfactual lethal encounters. Conducting
a variance decomposition in a nonlinear model, without making specific assumptions about
the joint distribution of («, X, Z;), is challenging. However, the counterfactuals in Table
and [3| can provide useful information in selected cases. For example, take the case of the
Philadelphia Police Department with characteristics of the New York City Police Depart-
ment. Table [2| shows that the lethal encounters by Philadelphia Police Department would
decrease from 28 to be in [6,13] if the unobserved characteristics of the New York City Police
Department were transferable. Table [3| however, shows that the effect of changes in the
covariates we believe can be affected by reforms to policing is ambiguous and in the inter-
val [20,29]. These numbers suggest that the effects associated with transferring unobserved
characteristics—which we take to include selection practices, training, promotion standards,
disciplinary procedures, and organizational culture—are plausibly more important in the
comparison between Philadelphia and New York.

In general, the relative importance of observed and unobserved characteristics is not as
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easy to assess as in the example above. One particular way to illustrate this point concerns
the total reduction in lethal encounters corresponding to the ten largest departments by
population served. Transferring the unobserved covariates of the New York City Police
Department leads to a reduction from 548 to [161,298]. The change in selected observed
covariates leads to a reduction to [228,371]. These changes are not easily amenable to

ranking. However, we think there is value in reporting the counterfactuals in Table [2] and [3]

6 Extensions

6.1 Counterfactuals in Binomial Regression

A common critique of the use of the Poisson distribution is the so-called overdispersion
problem. In a nutshell, this problem arises because the Poisson distribution forces the mean
and the variance of the outcome variable to be equal. The overdispersion problem typically
motivates the use of different statistical models for count data, such as the negative binomial
distribution.

In this section, we study the extent to which our Empirical Bayes counterfactuals can
be constructed by using other parametric models for Y;|X;, Z;q;; for example, a binomial
distribution instead of a Poisson. To simplify our discussion we assume there are no time-
invariant covariates. We also show that our model has no overdispersion problem. Thus,
the extension to other “kernels” (using Robbins’ language) discussed in this section intends
to provide a better understanding of the role of the Poisson parametric assumption in this
paper.

OVERDISPERSION: Under Assumption 1

E[Y;|X;, 5] = ajexp (X],8) = V(Y| X, a).
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Algebra shows that integrating out the agency-specific unobserved effect we obtain
V(Y;e|X;) = E[Y;|X;] + V(e |X;) exp (2X],8) (11)

which will be strictly larger than E[Y;|X;] as long as a; does not have a degenerate distri-
bution. This means that in our framework there is no overdispersion problem.
EXTENSION TO BINOMIAL REGRESSION: Let X j; denote the number of officers of

agency j at time t. Suppose

Y.[X, ) ~ Binomial(ahy, X1.), Ay = — P8 (12)
Jt 79 &g 73\t 1,5t)y \jt = 1+€Xp(XjT6)
and that (Yj1,...,Y,r) areii.d. across time, conditional on (X;, o;). The model above treats

the number of officers as the number of trials in a binomial regression model in which each
officer has a probability of committing a homicide equal to a;\;;. We make two assumptions.
First,

B =0, (13)

This means that the number of officers at time ¢t do not affect the probability that each

individual agent commits a homicide. Second

This is an important restriction, as we require the size of the agency to be independent of
the unobserved characteristics, given the observable covariates. If o; captures how violent
civilians are towards the officers of an agency, the assumption says that— conditional on the

other covariates—the unobservable characteristic does not affect the size of agency.

Proposition: Suppose conditions (13)-(14)) hold. Define the set )7(Yj, X) as all outcomes

Y; and covariate values Xj for which

27



L. Zthl Y/jt = Yj +1,
2. le —37}1 = X — Y,

3. P(X4[X;) = P(X4|X;).

Then,
1
Elo;|Y;, X5] = —=
V(Y X))
Yjty N
Z HT Xl,jt!)\jt Y;t' P(Yj, le, ng, Ce ,ij)
RN P(Y,;, X; '
Yj,XjGj;(Yj,Xj) lejt!)\jt Y]t' ( 7 ‘7)

PROOF: See Appendix O

The formula above shows that the posterior mean of o can still be represented in terms
of the marginal distributions of (Y, X;). Because the distribution of Y};|X;, a; varies over
time, it is more difficult to derive an analogoue of Robbins’ formula for the binomial kernel;
see Robbins (1956, eq. 37). However, it is still theoretically possible to use the marginal

distribution of (Y}, X;) to estimate the posterior mean.

7 Conclusion

As explained elegantly by |Gu and Koenker| (2017)), Empirical Bayes methods provide a
convenient, and principled, approach to deal with unobserved heterogeneity in panel data
(such as that arising from omitted variables for each unit). In this paper we have proposed a
simple framework that allows for the construction of unit-specific counterfactuals to changes
in observed and unobserved characteristics.

The empirical application that illustrates the methods developed in this paper concerns
the use of deadly force by police officers in the United States. Following Zimring| (2017) and

Sherman| (2018) we have focused on law enforcement agencies, rather than cities or states,
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and constructed a new yearly agency-level panel of police homicides covering the period
2013-2018.

To our knowledge there have not been attempts to construct a unified database that
connects lethal encounters with the characteristics of agencies and their jurisdictions. This is
partly because it is extremely difficult to obtain reliable, comprehensive data on agency-level
lethal encounters and other variables, such as arrests, and budgets.[j_g] While the FBI has made
efforts to compile data on measures including arrests through the Uniform Crime Reporting
Program, not all law enforcement agencies submit their reports to the FBI consistently. We
believe that requiring agencies to maintain and report accurate and detailed records of these
events is vitally important for researchers and policy-makers to better understand and reform
police practices.

We have not addressed racial and ethnic differences in the rate at which civilians are
killed by police in this paper. This is clearly a matter of the utmost policy importance and
the subject of considerable public interest. The nationwide protests following the killing of
George Floyd constituted possibly the largest mass action in American history, with over
half a million people in more than five hundred cities at peak in June 2020 (Buchanan, Bui
and Patel, |2020). Existing analyses of racial disparities in the use of deadly force—and in
police practices more generally—have used data from only a handful of police departments
(Hernandez-Murillo and Knowles, [2004; (Gelman, Fagan and Kiss, 2007; |Goff et al., [2016;
Fryer Jr., [2019; Hoekstra and Sloan, |2020)), rather than exploiting the cross-sectional varia-
tion across all agencies. The data we have constructed for this paper is not up to the task
of conducting such an analysis yet, but this is work in progress for a companion paper.

One of our main findings is that changes in both observed and/or unobserved character-

istics that mimic certain agencies could result in a significant reduction in lethal encounters.

29Constructing a useful budget covariate does not seem feasible, as different agencies have different bud-
getary structures. In Newark, for instance, the maintenance of police cars is done by the Division of Motors,
which is part of public works. This is somewhat surprising as police cars represent a large part of the work-
load of the Division of Motors. Gasoline for police cars, though, is in the police budget. Most importantly,
pension and health benefits for officers are not in the police department budget. They are lumped in with
other employees’ benefits in the unallocated section of the city’s budget.
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In particular, we found that if all agencies had the observed and unobserved characteristics
of the New York City Police Department, lethal encounters would be reduced from 548 to a
number in the range [115,189]. This is a reduction of at least 359 lethal encounters over a
six year period.

A key policy question concerns the extent to which unobserved attributes at the agency
level—which we take to include selection and training protocols, promotion standards, disci-
plinary procedures, and organizational culture—are transferable across agencies. Certainly,
some agencies have managed to achieve significant changes over time. For instance, the
number of times NYPD officers discharged firearms outside of training decreased from 810
in 1971 to 52 in 2019 (City of New York Police Department| 2020), and Sherman et al.| (1986))
found that the police departments of the largest cities (those over 250,000 in population)
reduced police homicides by around half from 1970 to 1984.

The highly decentralized nature of American policing creates challenges for statistical
inference and coordinated policy response, but perhaps also opportunities for experimenta-
tion and learning. Zimring (2017)) has written: “The imposing list of unanswered questions
about the character and means of controlling lethal violence by police officers requires com-
prehensive research of quality and relevance; the control of police use of lethal violence is
thus a policy emergency for scholars as well as public actors.” By providing a methodology
for identifying those agencies most in need of reform, and those from whom perhaps some

lessons can be learned, we hope to have contributed to this program.
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A  Proofs of Main Results

A.1 Proof of Proposition 1

Without loss of generality, we decompose the joint distribution of observables and unob-
servables using the following three terms. First, the conditional distribution of the outcome

vector

P(Y;|Xy, Z;, ). (15)

Second, the conditional distribution of observables given the unobservables

P(X;, Zjlay). (16)

And finally, the marginal distribution of unobserved characteristics

P(a;). (17)

Standard calculations show that

[ aP(Y;1X;, Zj)P(X, Zj|e)dP(cr)

Elo:|X;:. Y. Z;| = . 18
41X Y5 2= TR X, 7, )B(X,, Z,]a)dP(a) 18)

Algebraic manipulations show that
/ OB (Y, 1X;, Zj0)P(X; o) dB(a). (19)
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[ o (L POGIX,, 25 0)) POX o) dB()
_ / a (Hle (adi) eXp(_O‘Aﬁ)) P(X;, Z;|c)dP(a)

Yji!
/ aYitl (Hthl)\;’gt) exp (—a;) P(X, Z,{a)dP(c)
= Kl i « )
Yl . Y 7

where \; equals Zthl Ajt.-

Consider any other outcome profile Y = (Y1, ..., Y7)T such that

j

T
t=1

Dividing and multiplying the equation above by

vi!... Yyl
o )
implies that equation equals

- A7\ (Yl Yy
szlA% Y}ll RN }/;T'

/ a¥itl (HZ;M?;) exp (—a;)

Yyl .. Yy

7 Ao Yil... Yy - 5
= =1 ]f 1| Tl P(}qu---7"'YT7Xj17""XjT’
Hz;l)\ﬁ Y;lyv]T

P(X;er)dP(c)

The last line follows from the definition of marginal distribution, since
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PO, X 2) = [ POY,[X,. 2 )X, Zyfa)dB(a)

(aXjs)¥it exp (—a);;)
= [ (n, R0k pox, e,
!

/ oY <7rtT:1)\;/gt> exp (—a);)

Yil. . Yl

Then, in the Poisson regression model given by

Elo,]X;,Y;, Z;] =

(HzlAjt(Xjﬂﬁr(j))th) ( Yil.. . Y7l ) P(Y; X;, 7)) (21)
v

H?:l)‘jt(tha 5r(j)) YjI! - 'Y}'T! P(Yjv Xj7 Zj)'

The probability of observing a tuple (Y}, X;, Z;) for which Y; = u* equals

P(Y;,X;,Z;) = P(Y,]X;, Z;)P(X;, Z;)

= [/ <Z P(Y,|X;, Z;,Y; = u, )P(Y; = ula, X;, Zj)) dP(o|X;, Z;) | P(X, Z;)
u=0

- [ v 2,7, = w0 = o X, 2) dBlalX, 2| PO 2),

where the last inequality follows from the fact that P(Y;|X;,Y; = u,a) = 0, when u # u*.

We have assumed that

P(Y;i|X;, Z;, )

is a Poisson random variable with intensity parameter a)j;. Therefore

= L Aj1 AjT
(Yii,...,Y;r)|X;,Y; = u*, @ ~ Multinomial (u*, (;, cee ;)) ;
! ! e Zt)\jt Zt/\jt

which does not depend on «. Using the expression of the multinomial probability mass
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function implies

P(Y;, X, Z5) = (Yl' . -]-'YT!) T P(Y;|X;, Z)P(X;, Z;),

and, analogously,

V410 (IR o
( s ) ;1 = | PO+ 11X, Z)R(X;, 7)),

Yj+1
J

P(Y;, X, Z;) =

Yi!. .. Yy

Consequently,

P(Y}, X, Zj)

P(Y;, X, Z;) (Yﬂ!...YjT!> (EH) (HthlAf;> P(Y, +1X;, Z;)

Y
gt

Yfl' R Y/T' >‘j H?:1A ]P)(?j|Xj7 Zj)

The last equation implies
Vi+1 PY,;+1X;,2)

Elo;|Y; X, Z;] = ~_ - ,

where

A = exp(y7Z;) exp (X]Ttﬂ)

Posterior Mean in the Binomial Regression Model for Count Panel Data

We proceed as before and derive an expression for

[ aBOYIX, 0B ) aB()

(22)

(23)

(24)

in terms of the marginal distribution of outcomes and observables. For any Y, and X; and

/aP(Yj|Xj,aj)IP(Xj|a)d]P>(a)
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A.2 Nonparametric Bootstrap Cls

The confidence intervals reported in Section |5 were constructed by sampling values of (3 )
from their estimated asymptotic distribution. We evaluated the counterfactual of interest at
each value, and reported the 5% and 95% quantiles of the resulting distribution.

We recompute the confidence intervals reported in Section [5| by using a nonparametric
bootstrap. We sample (X;, Y], Z;) from their empirical distribution, excluding the 10 agen-
cies that are used in the counterfactuals. We construct a new data set of 7,609 and for
each new data set (we consider 1,000 of them) we estimate 5 and . We then evaluate the
counterfactual of interest at each value, and report the 5% and 95% quantiles of the resulting
distribution.

Table 5: Counterfactual police homicides for 2013-2018: Unobserved Covariates

Phoenix Las Vegas Dallas Philadelphia San Diego Chicago Los Angeles Houston San Antonio New York

Phoenix 93  [60,70]  [51,79] [44,98] [50,73]  [47,80] [44,60]  [43,54] [38,61]  [13,36]
Las Vegas [70,81] 51  [40,63] (35,79] [41,58]  [38,66] [34,51]  [34,44] [30,51]  [10,30]
Dallas [41,63]  [28,45] 33 [28,45] [26,39]  [25,44] [23,34]  [22,31] [24,29] 8,17]
Philadelphia  [28,61]  [19,43]  [22,35] 28  [20,36] [21,34] [17,30]  [16,29] [16,29] [7,12]
San Diego [35,51]  [24,35]  [24,35] [22,40] 26 [22,36] [20,27]  [19,25] [18,28] [6,14]
Chicago [75,128]  [51,88]  [50,87] [55,89] [48,78] 63 [45,66]  [41,60] (37,71  [16,35]
Los Angeles  [177,244] [116,172] [113,171] [110,191] [113,152] [110,163] 113 [94,123] [88,130]  [33,69]
Houston [90,114]  [61,80]  [56,81] [53,96] [56,73]  [55,81] [48,63] 51 [42,66]  [15,37]
San Antonio  [55,88]  [37,62]  [42,52] (36,67] [35,55]  [33,63] [31,46]  [28,44] 35  [11,24]
New York [145402]  [98,281] [110,229 131,221]  [105,234] [103,227 [92,191] [80,196 (84,177 55
Totals [835,1287] [564,906] (591,798 582,881] [556,764] [549,792 [517,618] [460,628 [442,627] [178,323]

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters). Off-diagonal entries are 90%
confidence intervals for counterfactual values of lethal encounters, obtained by replacing the posterior expectation
of o for the agency in the row with that of the agency in the column, while assuming no change in observed

covariates. Agencies are listed in decreasing order by their estimated value of «;.
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Table 6: Counterfactual police homicides for 2013-2018: Observed Covariates

Phoenix San Antonio Las Vegas Los Angeles Houston Dallas San Diego Chicago Philadelphia New York
Phoenix 93 (66,80] [71,81] [57,76] (55,71] (51,68] [41,60] [33,58] (24,52] [19,44]
San Antonio  [42,51] 35  [34,43] [29,35]  [28,34]  [26,32] (23,27  [17,28] (13,24] [10,20]
Las Vegas [60,69] [44,56] 51 [38,53] [37,49] (35,47] [28,40] [22,40] (17,36] [12,30]
Los Angeles  [141,189] [117,140] [111,156] 113 [95,119] [89,114] [77,98] [63,91] [47,80] [37,67]
Houston [69,89] [55,68] [55,72] [50,62] 51 [48,51] [36,49] [29,44] [23,38] [17,33]
Dallas [47,63] (38,47] [38,50] [34,44] [35,37] 33 [25,33] [20,30] [16,26] [12,23]
San Diego [42,61] (36,43] [35,50] (31,40] (29,39] [27,37] 26 [18,30] [14,26] [11,21]
Chicago [104,183] [83,139]  [83,152] [80,117] [76,113] [72,108] [57,96] 63 [43,60]  [33,51]
Philadelphia  [53,111] [43,82] [42,91] [41,70] [40,66] (38,62] [30,56] [31,43] 28 [20,29]
New York (119,284 [99,208 196,237 [96,172] [87,172] [83,163 [71,135] [71,107 (57,81 55
Totals [783,1169 [644,867] 626,961 [619,723] [569,706] [535,676] [445,505] [389,500 [300,435] [228,368)

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters).
confidence intervals for counterfactual values of lethal encounters, obtained by replacing Officers per 1k population,
Gun Death Rate, Share in Poverty, Garner, and LEOBR of the agency in the row with that of the agency in the
column. Agencies are listed in decreasing order by the estimated effect of these covariates, so entries decline as
one reads across rows.

Off-diagonal entries are 90%

Table 7: Counterfactual police homicides for 2013-2018: Unobserved and Observed

Phoenix Las Vegas

Dallas San Antonio Los Angeles

Houston San Diego

Chicago Philadelphia New York

Phoenix 93  [51,563] [32,49] [31,46] [33,40] [31,33] 31,34  [26,32] [20,31] [5,9]
Las Vegas (92,96] 51 [32,48] 30,46] [33,40]  [30,33] [30,33]  [26,31] [20,30] [5,9]
Dallas [67,99]  [37,55] 33 [32,34] [27,37]  [23,33] [22,33]  [20,30] [20,22] [5,7]
San Antonio  [73,110]  [41,61]  [36,39] 35 [30,41]  [25,37] [25,37]  [22,34] [22,25] [5,8]
Los Angeles  [269,324] [149,181] [104,146] [99,139] 113 [94,107]  [90,111]  [79,98] [65,93]  [17,28]
Houston [146,159]  [81,89]  [53,77] [51,74] [55,63] 51 [48,56]  [43,49] [33,49] [8,15]
San Diego [76,83]  [42,46]  [27,41] [26,39] [28,34]  [25,29] 26 [21,28] [17,26] [4,8]
Chicago [191,235] [106,130] [72,107] [68,104] [75,92]  [68,77] [62,83] 63 [46,66]  [11,21]
Philadelphia  [89,135]  [50,75]  [44,49] [41,48] [35,51]  [31,45] [30,46]  [28,40] 28 [7,10]
New York  [556,1066] [309,594] [266,392 259,369 232,383] [193,356] [188,362] [170,324 165,245 55
Totals [1682,2371] [932,1311] [750,909 716,365 693,855] [586,789] [564,800] [510,708 467,577]  [123,169)]

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters). Off-diagonal entries are 90%
confidence intervals for counterfactual values of lethal encounters, obtained by replacing the posterior expectation
of o for the agency in the row with that of the agency in the column, while assuming no change in observed

covariates. Agencies are listed in decreasing order by their estimated value of «;.

A.3 Assaults

In the main body of the paper we have interpreted the unobserved agency-specific covari-

ates as the agencies’ selection practices, training, and culture. One argument against this
g P g g g

interpretation is that our econometric model does not include any variable that controls

for the level of threat faced by officers in enforcing the law. To address this concern we

used the Law Enforcement Officers Killed and Assaulted (UCR-LEOKA) data set to extract

a time-varying measure of armed and unarmed assaults against police officers. There are

several measurement issues with this variable, including the fact that some of the largest
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police departments in our data set (including the New York City Police Department and the
Chicago Police Department) report no assaults on police officers over the period 2013-2018.

Table [§] shows that the coefficient on assaults per officer is not statistically different from
zero. Moreover, the inclusion of assaults per officer barely affects the results reported in the

main body of the paper.

Table 8: Coefficient Estimates

Coefficient Standard Errors

Murder per pop. (in hundred thousands) 0.004 0.008
Assaults per Officer (in tens) 0.077 0.104
Log of Avg. pop. (in millions) 1.192 0.106
Officers per pop. (in thousands) 0.013 0.004
Gun Death Rate (%) 0.047 0.017
Share in Poverty (%) 0.038 0.014
Share Black (%) -0.022 0.008
Garner -0.059 0.237
LEOBR -0.084 0.214

Land Area (sq. km.) per pop. (in millions) 1.0318e-05 1.7834e-06

Table [0 also reports counterfactual police homicides for 2013-2018 based on changes in
the agencies’ unobserved covariates. The best and worst performing agency (ranked by the
posterior mean of a;) remains the same, with the New York City Police Department and the
Phoenix Police Department at opposite ends of the table. The ranking for most of the other
agencies also remains unchanged (with the exception of Chicago, Philadelphia, Los Angeles,
and San Diego). Excluding New York and Chicago, the number of assaults reported by
each department to LEOKA is strictly positive. Consequently, it is not surprising to see the
unobserved covariates of the Chicago Police Department become less favorable than before
the inclusion of the assaults covariate. Similarly, the Los Angeles Police Department has
0.778 assaults per 10 officers, while the San Diego Police Department has 1.8470. This
means that officers in the San Diego Police Department have a higher risk of assault, and
as a result, the unobserved covariates get more credit for the relatively low number of lethal

encounters. Lastly, Table [10[reports counterfactuals based on observed characteristics, while
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reports counterfactuals based on observed and unobserved covariates.

Table 9: Counterfactual police homicides for 2013-2018: Unobserved Covariates

Phoenix Las Vegas Dallas Chicago Philadelphia San Diego Los Angeles Houston San Antonio New York
Phoenix 93 [65,116] [45,109] [42,103] (36,106] [47,77] [38,85] [39,73] (35,70] [11,43]
Las Vegas [42,89] 51 [31,66] [33,55] [22,75] [28,55] [29,46] [28,44] [20,50] (8,24]
Dallas [29,70] [27,58] 33 [22,48] [22,42] [20,42] [18,42] [19,36] [19,30] [7,15]
Chicago [58,143] [60,102] [46,101] 63 [38,96] [42,79] [41,73] [45,61] [29,79] [12,33]
Philadelphia [26,77] [20,67] [23,45] [19,49] 28 [19,43] [15,50] [16,40] [15,35] (6,17
San Diego [33,54] [26,50] [22,46] [22,41] [18,42] 26 [18,37] [20,31] [15,32] [5,17]
Los Angeles  [126,286] [130,204] [92,212] [99,177] (66,228] (82,175] 113 [87,138] [60,155] [27,66]
Houston [67,124] [62,95] [49,95] [54,74] [38,92] [46,71] [43,68] 51 [30,72] [12,34]
San Antonio [48,97] [38,94] [40,65] [29,80] [30,69] [30,64] [26,68] [26,61] 35 [9,26]
New York [121,496] [122,369] [125,281] [108,293 (97,272 (90,285 [96,232] (86,237 (79,218 55
Totals [690,1468] [656,1101] [586,942] [548,885 [430,1000]  [480,851 [490,739] (479,693 [374,720] [161,316]

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters). Off-diagonal entries are 90%
confidence intervals for counterfactual values of lethal encounters, obtained by replacing the posterior expectation
of o for the agency in the row with that of the agency in the column, while assuming no change in observed

covariates. Agencies are listed in decreasing order by their estimated value of «;.

Table 10: Counterfactual police homicides for 2013-2018: Observed Covariates

Phoenix Las Vegas San Antonio Los Angeles Houston Dallas Chicago San Diego Philadelphia New York
Phoenix 93 [67,85] [66,84] (62,84] (52,82] (48,80] [38,76] [41,68] (25,74] [23,62]
Las Vegas [57,73] 51 [46,59] [43,58] (38,54] (35,52] [28,48] [30,45] [19,48] [16,41]
San Antonio [40,51] [32,41] 35 [34,36] [27,37] (25,35] [20,33] [22,30] [13,33] [12,27]
Los Angeles  [128,173] [102,137] [114,122] 113 [90,117] [83,113] [66,107] [73,95] [45,104] [41,85]
Houston [59,94] [50,71] [51,69] [51,66] 51 [48,51] [37,48] [36,49] (25,47) [22,40]
Dallas [40,67] [34,50] [35,49] [34,46] (35,37] 33 [27,32] [25,34] [18,32] [16,27]
Chicago [79,159] [69,119] [69,117] [68,110] (69,89] (67,82] 63 [52,78] [42,65] [37,57]
San Diego [37,62] [31,47] [33,44] [32,42] [29,39] [27,37] [22,34] 26 [15,32] [15,26]
Philadelphia  [37,108] [31,81] [32,78] [32,73] (32,60] [31,55] [29,44] [24,53] 28 [21,30]
New York (85,234 (71,177 [75,164 [75,154] [72,131] [70,121 (63,97 (59,104 (54,76 55
Totals [666,1105] [555,834 (581,790 [579,743] [558,626] [526,588] [426,540] [422,536 [289,530] [263,445]

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters). Off-diagonal entries are 90%
confidence intervals for counterfactual values of lethal encounters, obtained by replacing Officers per 1k population,
Gun Death Rate, Share in Poverty, Garner, and LEOBR of the agency in the row with that of the agency in the
column. Agencies are listed in decreasing order by the estimated effect of these covariates, so entries decline as

one reads across rows.
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Table 11: Counterfactual police homicides for 2013-2018: Unobserved and Observed

Phoenix Las Vegas Dallas Los Angeles San Antonio Houston Chicago San Diego Philadelphia New York
Phoenix 93 [42,96]  [29,75] [28,68] [27,56] [27,53] [23,61] [28,41] [19,44] [4,19]
Las Vegas [51,116] 51 [26,54] [30,42] [19,50] [27,35] (26,35] [21,35] [15,35] [4,12]
Dallas [42,109]  [33,67] 33 [22,46] [23,36]  [20,38]  [19,41] [17,36] [19,24] [4,10]
Los Angeles [157,383]  [143,197] [84,174] 113 [63,162] [85,115] [83,116] [66,117] [49,112] [15,35]
San Antonio  [60,124]  [37,97]  [34,53] [25,65] 35 [23,53]  [21,58] [22,45] [22,31] [5,14]
Houston [93,180] [78,99] [46,90] [52,70] [35,81] 51 [44,61] (39,56] [28,57] [7,20]
Chicago [99,258] [94,129] [53,117] [63,88] [39,112] [55,76] 63 [41,82] [31,75] 19,25]
San Diego (62,92]  [40,65]  [26,54] [26,47] [22,44]  [25,36]  [21,42] 26 16,33] [4,13]
Philadelphia [62,142] [43,99] [41,53] [29,67] [34,46] [27,54] [25,59] [24,50] 28 [5,15]
New York [282,1306 [245,709]  [195,453 181,434 [143,442] [144,415] [144,402 114,416 112,310 55
Totals [1043,2750] [898,1496] [655,1021 652,933 [477,1001] [531,856] [515,877 436,861 379,674] [114,210]

Note: Diagonal entries are observed lethal encounters (totaling 548 encounters). Off-diagonal entries are 90%
confidence intervals for counterfactual values of lethal encounters, obtained by replacing Officers per 1k population,
Gun Death Rate, Share in Poverty, Garner, LEOBR, and the posterior expectation of o; of the agency in the row
with that of the agency in the column. Agencies are listed in decreasing order by the estimated effect of these
covariates, so entries decline as one reads across rows.
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