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Abstract

Topic models are a simple and popular tool for the statistical analysis of textual data. Their

identification and estimation is typically enabled by assuming the existence of anchor words; that

is, words that are exclusive to specific topics. In this paper we show that the existence of anchor

words is statistically testable: there exists a hypothesis test with correct size that has nontrivial

power. This means that the anchor-word assumption cannot be viewed simply as a convenient

normalization. Central to our results is a simple characterization of when a column-stochastic

matrix with known nonnegative rank admits a separable factorization. We test for the existence of

anchor words in two different datasets derived from the transcripts of the meetings of the Federal

Open Market Committee (FOMC)—the body of the Federal Reserve System that sets monetary

policy in the United States—and reject the null hypothesis that anchor words exist in one of them.
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1 Introduction

Topic models—statistical models that aim to help uncovering the thematic structure in a collection of
documents—are a simple and popular tool for the analysis of textual data; see Blei & Lafferty (2009),
Blei (2012) for excellent reviews, and Boyd-Graber, Hu, Mimno et al. (2017) for a list of applications.
The model assumes the existence of K latent topics, which are defined as probability distributions over
V terms in a given vocabulary. The model also assumes that each of the D documents is characterized
by a topic distribution; i.e., the share it assigns to each of the K latent topics.

An assumption that has become ubiquitous in this literature is the existence of anchor words

(Arora, Ge & Moitra 2012), which is inspired by the notion of separability used in nonnegative matrix
factorization problems; see Donoho & Stodden (2003) and Arora, Ge, Kannan & Moitra (2012).
Broadly speaking, anchor words are defined as special terms in the vocabulary that are exclusive to
each specific topic. It is well known that the existence of at least one anchor word per topic enables
the identification of the parameters of the topic model. The existence of anchor words also allows
the construction of estimators for the topic distributions with provable optimal statistical performance
guarantees, see the recent work of Bing, Bunea & Wegkamp (2020a,b) and Ke & Wang (2022).

This paper investigates the extent to which the existence of anchor words in topic models is statis-
tically testable. There is a long-standing practice in econometrics—going back, at least, to the work
on structural models of Koopmans & Reiersol (1950)—of testing the conditions that enable the iden-
tification of statistical models. The motivation behind this practice is that if a particular identifying
assumption (such as the existence of anchor words) is in conflict with the observed distribution of the
data, then the assumption ought to be dropped or at least relaxed.1

The null hypothesis of interest in this paper is that the observed text data was generated by a topic
model that satisfies the anchor words assumption; which means that the topic distributions exhibit at

least one anchor word per topic. The alternative hypothesis is that the anchor words assumption does
not hold. We say that the null hypothesis is testable at significance level α if there exists a test of
size at most α and, in addition, the test has nontrivial power (that is, power larger than the desired
significance level, for at least one parameter value in the alternative hypothesis).

Our first result (Proposition 1) identifies a necessary condition for the statistical testability of the
anchor words assumption. As is common in the literature we define the population term-document

frequency matrix, P, as the V×D column-stochastic matrix whose (v,d)-th entry contains the proba-
bility of randomly drawing term v in document d. Our proposition shows that in order for a statistical

1It is known that the existence of anchor words is sufficient for identification, but not necessary (Laurberg, Christensen,
Plumbley, Hansen, Jensen et al. (2008), Fu, Huang, Sidiropoulos & Ma (2019)). This means that point identification of
topic models can still be achieved even when this assumption is relaxed; see the recent work of Chen, He, Yang &
Liang (2022) that uses the sufficiently-scattered condition in Huang, Sidiropoulos & Swami (2013) and Huang, Fu &
Sidiropoulos (2016). Moreover, even without point identification it is still possible to use the distribution of the data to
partially identify the parameters of the topic model; for example, see Ke, Montiel Olea & Nesbit (2022).
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test to have nontrivial power there must exist population term-document frequency matrices—among
all of those that can be generated by a topic model with K topics—that do not admit a separable non-
negative matrix factorization. Our proposition simply formalizes an obvious observation: we cannot
hope to test for the existence of anchor words if every population term-document frequency matrix
admits a factorization for which its corresponding topic distributions have at least one anchor word
per topic.

Our second result (Theorem 1) provides a characterization of when a column-stochastic matrix
with known nonnegative rank admits a separable factorization. Our theorem—which builds on the
seminal work of Recht, Re, Tropp & Bittorf (2012)—suggests a simple computational procedure to
decide whether a separable nonnegative factorization exists for a given P. This allows us to assess,
for example, how likely it is that a randomly generated population term-document frequency matrix
admits a separable factorization (see, for example, Figure 3a and its description). Using our theorem,
we find that for 2 < K < min{V ,D} the likelihood of such an event is low.2

It is worthwhile to give a brief overview of the characterization result in Theorem 1 and explain
its relation to the literature. Note that for any arbitrary matrix P ∈ RV×D that can be factorized
as the product of two matrices (A,W)—with a factor A ∈ RV×K of rank K—there always exists
a matrix C ∈ RV×V of rank K such that CP = P. Broadly speaking, the previous equation states
that there are K rows of P that can be used to (linearly) generate any of its other rows. When P is a
column-stochastic matrix that admits a separable factorization, it is possible to give more details on
the types of linear combinations, C, that can be used to generate the rows of P. To the best of our
knowledge, this observation was first made by Recht et al. (2012) and Gillis (2013). Our Theorem 1
builds on their results and shows that P has a separable nonnegative matrix factorization if and only

if the linear program suggested by Recht et al. (2012) to find a nonnegative matrix factorization of
separable matrices has a nonempty choice set. More precisely, Theorem 1 formally shows that P has
a separable nonnegative matrix factorization if and only if there exists a matrix C in the set

CK ≡ { C ∈ RV×V | C ⩾ 0, (1)

tr (C) = K,

cjj ⩽ 1, for all j = 1, . . . ,V ,

cij ⩽ cjj, for all i, j = 1, . . . ,V},

2The fact that not all nonnegative matrices of nonnegative rank K have a separable factorization with K topics should
not be surprising, given well-known results in the computer science literature about the complexity of nonnegative matrix
factorization. For instance, Vavasis (2010) has shown that the exact nonnegative matrix factorization problem is NP-hard.
It is also known that finding a separable factorization (when such a factorization exists) can be done in polynomial time
in (V,D,K); see Arora, Ge, Kannan & Moitra (2012). If every nonnegative matrix with nonnegative rank of K admitted a
separable factorization, then the two previous results together would imply that the exact nonnegative matrix factorization
problem is both P and NP-hard. Under the P ̸= NP hypothesis, an NP-hard problem cannot be in P.
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that satisfies the equation
CProw = Prow, (2)

where Prow is the row-normalized version of P.
The set CK is the set of all nonnegative matrices of dimension V × V that have elements in [0, 1],

have trace equal to K, and have the property that the “sup-norm” of every column j is bounded by its
j-th diagonal value. The set of all matrices C that satisfy (1) and (2) can be thought of as all rank-K
convex combinations of the rows of Prow. Theorem 1 thus suggests that a reasonable test statistic for
testing the anchor words assumption given a text corpus Y is

T(Y) ≡ inf
C∈CK

∥CP̂row − P̂row∥, (3)

where P̂row is a suitable estimator of the matrix Prow (which denotes the row-normalized population
term-document frequency matrix), and ∥ · ∥ is some matrix norm (which we will take, throughtout the
paper, to be the Frobenius norm).

Our third result (Theorem 2) shows that, under some high-level conditions, there exists a test of
significance level α based on the test statistic (3) which has nontrivial power. Our proof is construc-
tive, and the test we suggest rejects the anchor word assumption whenever T(Y) is large. To guarantee
that the test has size at most α, we rely on a critical value that is chosen to be equal to the “worst-case”
(1 − α)-quantile of T(Y), which we denote as q∗

1−α. By “worst-case” we mean the largest quantile
among all those that could be obtained using a distribution for word counts generated by a model that
satisfies the anchor word assumption.

While the validity of the suggested test holds by construction, the analysis of the test’s power is
more delicate. For intuition, first note that by the reverse triangle inequality,3

T(Y) ⩾ inf
C∈CK

∥(C− IV)(AW)row∥− sup
C∈CK

∥(C− IV)(P̂row − Prow)∥. (4)

This means that the power of the test is lower-bounded by the probability of the event

inf
C∈CK

∥(C− IV)(AW)row∥ ⩾ sup
C∈CK

∥(C− IV)(P̂row − Prow)∥+ q∗
1−α. (5)

If P does not admit a separable factorization, the left-hand side of (5) is strictly positive by Theorem
1. Further, if the estimator P̂row is close enough to Prow with high probability—regardless of whether
the anchor word assumption holds—then both terms on the right-hand side of (5) will be small. Thus,
one would expect (5) to hold with high probability at any point (A,W) for which the matrix P = AW

does not have an anchor word factorization. And we provide conditions under which this is indeed

3Here and throughout, IH denotes the identity matrix of size H.
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the case (for example, when the document sizes are large; see Corollary 1 in Appendix A.2).
Although Theorem 2 shows that the test that rejects the null whenever “T(Y) > q∗

1−α” has correct
size and nontrivial power, obtaining q∗

1−α is computationally infeasible. To address this issue, in
Section 4.2.2 we derive a computationally tractable “bootstrap” upper bound for the critical value that
allows to test for the existence of anchor words in realistic applications.

Finally, in order to illustrate the applicability of our theoretical results, we analyze the transcripts

of the meetings of the Federal Open Market Committee (FOMC), which is one of the main organs
within the Federal Reserve System in charge of setting monetary policy in the United States. We
focus on the FOMC transcripts during the “Greenspan period”, the 150 meetings from August 1987
to January 2006 in which Alan Greenspan was chairman. We separate each transcript into two parts:
the discussion of domestic and international economic conditions (FOMC1) and the discussion of the
monetary policy strategy (FOMC2). This gives us two different corpora to analyze4.

The first corpus (FOMC1) allows us to illustrate the potential benefits of assuming the existence
of anchor words in a concrete empirical application. Aside from the computational tractability and
the theoretical identification results that become available under the anchor word assumption, the
estimated anchor words can potentially provide natural and objective labels for the estimated topics.
We think this is an important point, as it has recently been argued that an inherent challenge of topic
models in empirical applications is that they “do not generate objective topic labels” and that “A given

topic consists of many words, and words are scattered across many topics, so the outputs are often

difficult to interpret.”; see the discussion in Section 3.2.2.1 of Ash & Hansen (2023). In contrast, as we
explain in detail in Section 5, the anchor words for FOMC1 are all readily interpretable (see Figure
9 and the discussion in Section 5.2.2). Moreover, the estimated topic proportions for the FOMC1
corpus seem to be consistent with historical events that shaped monetary policy decisions during the
Greenspan period. In line with these results, when we apply our suggested testing procedure to this
corpus, we indeed find that a nominal 5%-level test fails to reject the null hypothesis of anchor words
for the FOMC1 corpus.

The results for the FOMC2 corpus are different. As we explain in Sections 5.2.2 and 5.2.3, the
anchor words and the estimated topics for FOMC2 are difficult to interpret. Also, with the exception
of two topics, it is difficult to provide a rationale for the historical evolution of the topic shares. Even
without a formal statistical test, this suggests that the distribution of the data might not be compatible
with the existence of anchor words, even if the topic model is assumed to be correctly specified. We
then apply our suggested testing procedure to this corpus and indeed find that a nominal 5%-level
rejects the anchor word assumption for the FOMC2 corpus.

The rest of this paper is organized as follows. Section 2 presents the model. Section 3 presents

4See Chappell Jr, McGregor & Vermilyea (2004), Meade & Stasavage (2008), Meade & Thornton (2012), Hansen,
McMahon & Prat (2018) for other studies using the FOMC transcript data.
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the main theoretical results. This section also shows that when K = 2 the anchor word assumption
is not statistically testable, but gives concrete examples of statistical testability when K = 3. Section
4 presents numerical results. Section 5 presents the empirical application. Section 6 concludes.
Appendix A collects the proofs of the main results. Appendix B contains additional results and
supporting material.

2 Model

2.1 Notation

We observe documents d = 1, . . . ,D, based on a dictionary of v = 1, . . . ,V terms. There is a V × K

column-stochastic matrix, A, whose columns represent a probability distribution over the V terms
that constitute the dictionary.5 We refer to each of the columns of A as a topic, and to A as the term-

topic matrix. There is also a K × D column-stochastic matrix, W, collecting the probabilities that
a document covers a particular topic k = 1, . . . ,K. We refer to W as topic-document matrix. We
assume that K ⩽ min{V ,D}.

It will be convenient to have specific notation to denote the v-th row, the k-th column, and the
(v,k)-th entry of A. We will use Av•,A•k and avk respectively. We use analogous notation for W
and any other matrix. Further, for an arbitrary matrix B, we use RB to denote the diagonal matrix that
contains the row sums of B, and use Brow to denote the “row-normalized” version of a matrix B. That
is, Brow = R−1

B B.
We assume that the probability of a term v appearing in a given entry of document d, pvd, is given

by

pvd =

K∑
k=1

P(Term v|Topic k)Pd(Topic k) =

K∑
k=1

avkwkd. (6)

Thus, the V ×D matrix P defined by

P
(V×D)

= A
(V×K)

W
(K×D)

, (7)

collects the terms pvd. We will refer to P as the population term-document frequency matrix. Through-
out, we maintain the assumption that both A and W are full rank and that the rows of A and P are all
different from zero.6 We further assume that the number of topics K is known and fixed.

5A matrix A ∈ RV×K is column stochastic if its columns are probability distributions over RV . See p. 253 of Doeblin
& Cohn (1993) for a definition.

6Note that, if there exists a term v with ∥Av•∥0 = 0, this term is not used in any document. Removing any unused terms
from the dictionary and rewriting (7) using the smaller vocabulary V ′ immediately implies that ∥Av•∥0 ̸= 0 ∀v ∈ V ′.
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2.2 Statistical model

The observed data consist of the number of times each term v appears in a specific document d.
Denote these counts by the V × D matrix Y. Let Nd be the total number of words in document d,
and Nmin ≡ min{N1, . . . ,ND}. Following the literature (e.g. Hofmann (1999)), we assume that for
each document d

Y•d|(A,W) ∼ Multinomial (Nd,AW•d) . (8)

We maintain throughout that the vectors of counts Y•d are independent across documents, conditional
on (A,W).

It is well known that the parameters (A,W) in the statistical model (8) are not identified. This
follows from the fact that any pair of parameters (A,W) ̸= (Ã, W̃) such that AW = ÃW̃ will induce
the same probability distribution over the data. In general, the culprit for the lack of identification
is the multiplicity of solutions for the nonnegative matrix factorization problem defined by Equation
(7); see Donoho & Stodden (2003), Fu et al. (2019).

The lack of identification poses statistical and computational challenges to the estimation of the
parameters of the multinomial model in Equation (8). A common approach in the literature to circum-
vent these issues is to posit the existence of anchor words (Arora, Ge & Moitra (2012), Ke & Wang
(2022), Bing et al. (2020a)). A term v(k) in the vocabulary is an anchor word for topic k if such a
term only has positive probability under topic k; that is Av(k)k > 0 and Av(k)k̃ = 0 for k̃ ̸= k. More
formally:

Definition 1. A column stochastic, rank K matrix A ∈ RV×K is said to have anchor words if there

exists a row permutation matrix Π such that

ΠA =

[
D

M

]
, (9)

where D ∈ RK×K is a diagonal nonnegative matrix.

Since only the parameter P = AW is identified in the multinomial model (8), it will be convenient
to have an explicit definition of what it means to say that P admits a nonnegative matrix factorization

with anchor words:

Definition 2. A column stochastic matrix P ∈ RV×D with nonnegative rank K is said to have a rank

K, anchor word (or separable) factorization if P can be written as

P = AW
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where A ∈ RV×K is some matrix that satisfies Definition 1, and W is a K × D column stochastic

matrix.

2.3 The existence of anchor words as a statistical hypothesis

The goal of this paper is to analyze the extent to which the existence of anchor words is statistically
testable. As we mentioned in the introduction, testing the conditions that enable the identification of
statistical models has a long history in econometrics. Below we give a formal statement of our goal.

Let Θ denote the parameter space of the multinomial model in Equation (8). The parameter space
refers to the collection of matrices (A,W) defined in (6)-(7) that could have generated the data. Define
the “null set” Θ0 as:

Θ0 ≡ {(A,W) ∈ Θ |A has anchor words as defined by Definition 1}. (10)

The statistical hypothesis testing problem of interest is

H0 : (A,W) ∈ Θ0 vs. H1 : (A,W) ∈ Θ1 ≡ Θ\Θ0. (11)

Let Y denote the space of all possible data realizations according to the model in Equation (8). As
usual, define a statistical test for the hypothesis testing problem in (11) as a function ϕ : Y → [0, 1],
where ϕ(Y) is interpreted as the probability of rejecting the null hypothesis when the observed data
is the count matrix Y.

Definition 3. The statistical hypothesis H0 is testable at significance level α if there exists a test ϕ

such that

sup
(A,W)∈Θ0

E(A,W)

[
ϕ(Y)

]
⩽ α, (12)

and if there exists a parameter (A,W) ∈ Θ1 ≡ Θ\Θ0 such that

E(A,W)

[
ϕ(Y)

]
> α. (13)

As usual, we refer to any test satisfying (12) as a valid test of significance level α. Also, for any
(A,W) ∈ Θ1 we refer to E(A,W)

[
ϕ(Y)

]
as the power of the test ϕ at the parameter value (A,W).

Thus, Definition 3 says that the statistical hypothesis H0 is testable if there exists a statistical test with
correct size and with nontrivial power; that is, power larger than the desired significance level at least
at one parameter value in the alternative hypothesis Θ1.

The following simple proposition connects the statistical testability of H0 to the existence of an-
chor word factorizations of the population term-document frequency matrix, P.
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Proposition 1. Let (A,W) be a parameter vector such that A does not have anchor words according

to Definition 1; i.e., (A,W) ∈ Θ1. If the matrix P ≡ AW has an anchor word factorization—in the

sense of Definition 2—then any valid test of significance level α for the hypothesis H0 has power of

at most α at (A,W).

Proof. According to the statistical model in (8), the distribution of Y depends on the parameter (A,W)

only through P ≡ AW. If P has an anchor word factorization, then—by Definition 2—there exists
(Ã, W̃) ∈ Θ0 for which AW = P = ÃW̃. Therefore, the power of any valid test ϕ of significance
level α at (A,W) satisfies:

E(A,W)

[
ϕ(Y)

]
= EAW

[
ϕ(Y)

]
= EÃW̃

[
ϕ(Y)

]
⩽ α, (14)

where the last inequality follows because (Ã, W̃) ∈ Θ0.

The elementary result stated in Proposition 1 formalizes the observation that if any given matrix
P with nonnegative rank K were to admit an anchor word factorization, then any statistical test ϕ of
significance level α for the hypothesis H0 would be trivial, in the sense that its power against any
alternative (A,W) ∈ Θ1 is at most α. According to Definition 3 above, this makes the hypothesis
H0 untestable. Consequently, Proposition 1 implies that a necessary condition for the testability of
the anchor word assumption is that not all matrices P with nonnegative rank K admit an anchor word
factorization.

A more abstract way to think about Proposition 1 is by imagining the topological structure of the
null hypothesis relative to whole parameter space. For instance, it is known that if a matrix P = AW

for (A,W) ∈ Θ1 can be approximated arbitrarily well (in total variation distance) by elements in
the set of distributions satisfying the null hypothesis (i.e., P is on the “topological boundary” of the
null set), then, by continuity, the rejection probability of the test at such P must be no larger than the
size of the test; see Lemma 2.1 in Canay, Santos & Shaikh (2013). When the matrix P = AW for
(A,W) ∈ Θ1 has an anchor word factorization, then that means there is a (A0,W0) ∈ Θ0 for which
P = A0W0. This means that the total variation distance between the induced data distributions for
parameters (A,W) and (A0,W0) has to be zero. We return to this topological interpretation in the
next section to argue that there are matrices P that do not admit an anchor word factorization, and that
those matrices are not on the boundary of the null set (see Remark 5, after Theorem 1).

8



3 Main Theoretical Results

3.1 When does P admit an anchor word factorization?

According to Proposition 1, a necessary step to assess the testability of the anchor word assumption
is to understand whether all column-stochastic matrices P with nonnegative rank K admit an anchor
word factorization. Theorem 1 below sheds light on this issue.

Before presenting our result, we provide a brief algebraic illustration of the thought process that
led to it. Note first that for any arbitrary matrix P ∈ RV×D that can be factorized as the product of
two matrices (A,W)—with a factor A ∈ RV×K of rank K—there exists a matrix C ∈ RV×V such
that

CP = P, (15)

where C is also of rank K. Broadly speaking, the equation above says that there are K rows of P that
can be used to generate any of its other rows by means of linear combinations. For example, assume
w.l.o.g. that the first K rows of A, denoted A0, are full rank. Then, we may write

P =

[
A0W

A1W

]
, and thus C =

[
IK 0K×(V−K)

A1A
−1
0 0(V−K)×K

]
satisfies Equation (15).

When P is a column-stochastic matrix that admits an anchor word factorization, it is possible to
give more details on the types of linear combinations, C, that can be used to generate the rows of P.
To the best of our knowledge, this interesting observation was first made by Recht et al. (2012) and
Gillis (2013).

To illustrate this point, suppose that A0 is not just full rank, but diagonal (such that A has anchor
words by Definition 1):

P = A∗W∗ =

[
A0W

∗

A1W
∗

]
=

[
DW∗

MW∗

]
,

where D is diagonal. With D diagonal, we can rewrite A1A
−1
0 = MD−1 = RMW∗(RMW∗)−1MRW∗(RDW∗)−1,

and all entries in A1A
−1
0 are nonnegative. Thus, the matrix C̃ defined as

C̃ ≡ RPCR
−1
P , where C ≡

[
IK 0K×(V−K)

(RMW∗)−1MRW∗ 0(V−K)×K

]
, (16)

satisfies Equation (15). In particular, algebra shows that the matrix C in Equation (16) belongs to the
set

9



CK ≡ { C ∈ RV×V | C ⩾ 0,

tr (C) = K,

cjj ⩽ 1, for all j = 1, . . . ,V ,

cij ⩽ cjj, for all i, j = 1, . . . ,V}.

(17)

The set CK is the set of all nonnegative matrices of dimension V × V that have diagonal elements in
[0, 1], have trace equal to K, and have the property that the “sup-norm” of every column j is bounded
by its j-th diagonal value (which is reminiscent, but weaker, than the presence of a dominant diagonal).

Since C̃P = P, it follows that the matrix C in Equation (16) satisfies

CProw = Prow. (18)

The following theorem shows that the existence of an anchor word factorization is characterized by
the existence of a matrix C ∈ CK that satisfies Equation (18).

Theorem 1. A column-stochastic matrix P ∈ RV×D with nonnegative rank K ⩽ min{V ,D} admits a

rank K anchor word factorization—in the sense of Definition 2—if and only if

CK(P) ≡ CK ∩
{
C ∈ RV×V | CProw = Prow

}
̸= ∅. (19)

Proof. See Appendix A.1.

Remark 1. The set of matrices CK(P) in Equation (19) can be viewed as the “choice” set of a linear
program, where the objective function could be any arbitrary linear functional of C. To the best of our
knowledge, this set was first studied by Recht et al. (2012), who use the linear program:

min
C∈CK(P)

b ′ diag(C) (20)

(where b is any vector with distinct, non-zero entries) to factor a separable nonnegative matrix with
known, nonnegative rank K. Theorem 1 shows that checking whether a column-stochastic matrix P

with nonnegative rank K admits a rank K anchor word factorization is equivalent to checking whether
the linear program (20) has a nonempty choice set.

Remark 2. It turns out that an anchor word factorization always exists when K = 2. We first use a sim-
ple geometric argument to explain the intuition behind this result. Consider a simple low-dimensional
example where V = 4 and K = 2 (i.e., there are four words and only two topics). This example is
depicted in Figure 1 below. Each column of the matrix P, which contains the probabilities assigned
to each word in each document, can then be depicted in a tetrahedron representing the simplex in R4.
The topics themselves (the columns of A) also correspond to a set of probabilities over the four words;

10



thus they can also be represented by points inside the simplex. Further, because the documents are a
mixture of two topics (P = AW), all documents will lie on the ray (depicted as a black solid line)
that is spanned by the two topics, and in fact fall inside the convex hull of the two topics. Intuitively,
when K = 2, we can always find an anchor word factorization by intersecting the ray with the faces
of the tetrahedron. This intersection is depicted by the red filled circles in the figure. It is easy to see
that any matrix A with columns belonging to different faces of the tetrahedron will have the anchor
word structure.

Figure 1: Graphical representation of a topic model with V = 4 and K = 2 using the simplex in R4. The
vertices of the simplex represent the four words. The solid black line represents the ray spanned by the columns
of the matrix P, which is assumed to have rank K = 2. The red filled circles in the intersection of the ray with
the faces of the tetrahedron are the columns of a matrix A with two anchor words.

In Appendix B.4, we complement our geometric arguments with an analytical derivation that uses
Theorem 1 to formally show that when K = 2 ⩽ min{V ,D}, any nonnegative matrix P of rank two
(and whose rows are different from zero) admits an anchor word factorization. Our verification of
Theorem 1 explicitly constructs a matrix C ∈ C2(P) that satisfies Equation (19). Our construction
also shows how to obtain the anchor words corresponding to P, starting from an arbitrary column-
stochastic nonnegative matrix factorization of it.

Remark 3. We next argue that, even in simple low-dimensional problems, an anchor word factoriza-
tion need not exist. We do so through a geometric argument similar to the one discussed above (with
V = 4) that illustrates why an anchor word factorization frequently does not exist when K = 3, and
to explain the differences vis-à-vis the case in which K = 2.

With four words (V = 4) and three topics (K = 3), we can still depict the columns of P in the
tetrahedron we used in Figure 1. Further, because the documents are now a mixture of three topics,
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all documents will lie on the plane that is spanned by the three topics. This is illustrated in Figure 2.

(a) Case I (b) Case II

Figure 2: Graphical representation of a topic model with V = 4 and K = 3 using the simplex in R4. The plane
represents the space spanned by the columns of the matrix P, which is assumed to have rank K = 3. The red
filled circles are the intersection of the plane with the edges of the tetrahedron.

We start by noting that if an anchor word factorization exist, the topics must lie on the edges (the
one-dimensional faces) of the tetrahedron. The reason is that a necessary condition for A to have
anchor words is that all three topics are associated with at most two words (the word-topic matrix
must have at least two zeros in each column).

We next note that a plane intersecting a tetrahedron will, in general, either intersect three or four
of its edges. In case I (Figure 2a), the space spanned by the topics intersects three edges of the word
simplex. In this case, those three edges necessarily share a common vertex. That means that the
word associated with that vertex has non-zero probability under all three topics. But since the word-
topic matrix has two zeros in each column, it then immediately follows that the three solid red circles
provide an anchor word factorization of P.

In case II (Figure 2b), the space spanned by the topics intersects four edges of the word simplex.
No matter which three out of these four circles one selects as the columns of A, each row has at least
one entry equal to zero. Thus, up to a row permutation,

A =


α 0 0

0 γ 0

0 1− γ 1− β

1− α 0 β

 ,

for α,β,γ ∈ (0, 1), and A does not have anchor words. Further, we can show using Theorem 1 that
any P of the form above does not have an anchor word factorization; see Appendix B.5. In Section 4
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we also provide numerical evidence suggesting that the probability that randomly sampled matrices
P with a nonnegative rank K with 2 < K < min{V ,D} admit an anchor word factorization could be
very low.

Figure 2 is also helpful to illustrate what happens when the anchor word assumption is erroneously
imposed (and the model misspecified). Suppose P does not have an anchor word factorization and
the documents lie on the plane depicted in Case II (Figure 2b), but we estimate A under the anchor
word assumption. This restricts the set of word-topic matrics A to those that span planes which only
intersect the tetrahedron at three vertices (cf. Figure 2a). Figure 2 suggests that this can lead to both
misleading interpretation of the topics and a substantially poorer model fit.

Remark 4. We show in Appendix B.1 that for any matrix norm, Theorem 1 is equivalent to saying
that a column-stochastic matrix P with nonnegative rank K admits a rank K anchor word factorization
if and only if

min
C∈CK

∥CProw − Prow∥ = 0. (21)

We use this simple observation to construct a statistical test for the null hypothesis of anchor words.
For the remainder of the paper we let ∥ · ∥ denote the Frobenius norm.

Remark 5. While Theorem 1 and its Remark 3 show that some column-stochastic matrices with non-
negative rank K do not have an anchor-word factorization, this is not yet sufficient to establish the
statistical testability of the anchor word assumption. For instance, if every matrix P that does not have
an anchor-word factorization could be approximated by a sequence of matrices with an anchor-word
factorization, then Lemma 2.1 in Canay et al. (2013) would imply that the power of any test of size
α must also be at most α at any such P. However, intuitively, continuity of the norm in Equation
(21) can be used to show that whenever P does not have an anchor-word factorization, there is no
sequence of matrices with an anchor-word factorization that converges (in total variation norm) to P

(see Appendix B.2 for a formal derivation). This shows that the matrices P that do not have an anchor
word factorization belong, in a sense, to the topological interior (with respect to the total variation
norm) of Θ1.
Final Comment on Theorem 1. We first encountered the connection between the set CK(P) and the
anchor word factorization of P in the work of Recht et al. (2012). In particular, their Theorem 3.1 on
p. 4 can be viewed, mutatis mutandi, as showing that if an anchor word factorization of P exists, then
CK(P) is nonempty.

We extend the results in Recht et al. (2012) in two ways. First, we show that it is possible for the set
CK(P) to be empty for some matrices P that have nonnegative rank K, provided 2 < K < min{V ,D}.
Second, we establish the reverse direction: if CK(P) is nonempty, then an anchor word factorization
of P exists. In other words, we show that not every matrix P has an anchor word factorization, and
that the matrices P for which CK(P) is empty are precisely those for which there is no anchor word
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factorization.
To prove Theorem 1 we establish that—up to a permutation matrix—the construction given in our

illustrative example of Equation (16) is possible if and only if P has an anchor word factorization (see
Lemma 1 in Appendix A.1). One direction of this Lemma is implicitly used by Recht et al. (2012) in
the introduction of their hottopixxx algorithm (see their definition of a factorization localizing matrix)
and is also stated in Equation 1.1 of Gillis (2013). We formally derive this result and its reverse
direction in Lemma 1.

3.2 Testing the existence of anchor words

Let P̂row denote some estimator of the matrix Prow based on the available data Y. Consider the test
statistic T(Y) defined as

T(Y) ≡ inf
C∈CK

∥CP̂row − P̂row∥. (22)

In Appendix B.3 we show that when ∥ · ∥ is the Frobenius norm, this “inf” is attained for any P̂row,
and thus can be replaced by a “min”. Define ND = (N1, . . . ,ND) to be the vector collecting the
total number of words per document. Let q1−α(AW,V ,D,K,ND) denote the 1 − α quantile of the
test statistic T(·) assuming that the data was generated by the multinomial model in Equation (8)
with parameters (A,W). Since the distribution of the data used to estimate Prow only depends on the
paramaters (A,W) through AW, then the quantiles of T only depend on the parameters through the
same product. Consider then the critical value

q∗
1−α(V ,D,K,ND) ≡ sup

(A,W)∈Θ0

q1−α(AW,V ,D,K,ND), (23)

and define the test:

ϕ∗(Y) ≡

{
1 if T(Y) > q∗

1−α(V ,D,K,ND),

0 otherwise.
(24)

The next theorem shows the test in (24) has significance level α for any possible configuration
(V ,D,K,ND) of the multinomial model in Equation (8). It also gives a high-level sufficient condition
under which the test has nontrivial power.

Theorem 2. The test ϕ∗ has significance level α; i.e.,

sup
(A,W)∈Θ0

E(A,W)

[
ϕ∗(Y)

]
⩽ α. (25)

14



Moreover, suppose there is a parameter value (A,W) ∈ Θ1 for which

P(A,W)

(
inf

C∈CK

∥(C− IV)(AW)row∥− sup
C∈CK

∥(C− IV)(P̂row − (AW)row)∥ > q∗
1−α(V ,D,K,ND)

)
(26)

exceeds α. Then for such (A,W) ∈ Θ1 we have

E(A,W)

[
ϕ∗(Y)

]
> α.

Proof. We first establish (25). For any (A,W) ∈ Θ0

E(A,W)

[
ϕ∗(Y)

]
= P(A,W)

(
ϕ∗(Y) = 1

)
= P(A,W)

(
min
C∈CK

∥CP̂row − P̂row∥ > q∗
1−α(V ,D,K,ND)

)
⩽ P(A,W)

(
min
C∈CK

∥CP̂row − P̂row∥ > q1−α(AW,V ,D,K,ND)

)
= α,

where the last two lines follow from the definition of q∗
1−α. Thus, ϕ∗ has size of at most α, regardless

of the model’s configuration (V ,D,K,ND).
Now we analyze power. The power of the test ϕ∗ at (A,W) ∈ Θ1 is given by

P(A,W)

(
min
C∈CK

∥CP̂row − P̂row∥ > q∗
1−α(V ,D,K,ND)

)
.

Since ∥ · ∥ satisfies the reverse triangle inequality, then

min
C∈CK

∥CP̂row − P̂row∥ ⩾ inf
C∈CK

∥(C− IV)(AW)row∥− sup
C∈CK

∥(C− IV)(P̂row − Prow)∥.

This means that the power of the test ϕ∗(Y) at any parameter values (A,W) ∈ Θ1 that satisfies
Equation (26) is at least α.

The nontrivial power of the test ϕ∗ in Theorem 2 is obtained under the high-level assumption in
(26), which involves the following three terms:

i) infC∈CK
∥(C− IV)(AW)row∥,

ii) supC∈CK
∥(C− IV)(P̂row − (AW)row)∥,

iii) q∗
1−α(V ,D,K,ND).
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Intuitively, the high-level assumption in (26) requires the term in i) to be larger than the terms ii)-iii),
with probability at least α.

In Appendix A.2 we verify the high-level assumption in Theorem 2 for the estimator P̂row
freq: the

row-normalized version of the relative frequency counts, P̂freq ≡ nv,d/Nd. In particular, we show
that, under a weak regularity condition, if Nmin ≡ min{N1, . . .ND} is large enough, the high-level
assumption used in Theorem 2 holds at any point (A,W) ∈ Θ1 such that P = AW does not have an
anchor-word factorization. In fact, we show in Corollary 1 in Appendix A.2 that the probability of the
event in (26) (and thus the power of the test) will be arbitrarily close to one, ensuring consistency of
the test at any point in the alternative for which the anchor word factorization does not exist.

4 Numerical Results

We next present numerical results to accompany our theoretical analysis in the previous section. First,
we use Theorem 1 to study how likely is to draw a matrix P that has an anchor word factorization for
different values of (V ,K,D). Then, we illustrate Theorem 2 by showing finite sample results for a
version of our test that uses a “bootstrap bound” for the critical value.

4.1 Known P

We start with the case in which P is known. The goal is to understand how likely it is for a ran-
domly generated matrix of the form P = AW to admit an anchor word factorization for a vari-
ety of combinations of (V ,K,D). To do this, we randomly generate column-stochastic matrices
(A,W) ∈ RV×K × RK×D. For each realization, we then use a linear program—as the one that ap-
pears in Equation (20) in Remark 1—to check whether the set CK(P) in Equation (19) is empty or
not. We then report the fraction of randomly generated matrices for which the set CK(P) turned out to
be nonempty. By Theorem 1 this is equivalent to the fraction the sampled P that has an anchor word
factorization.

The results of this exercise are depicted in Figure 3, where we fix D = 100 and vary K ∈ {2, 3, 4}

and V ∈ {4, 10, 100}. Figure 3a corresponds to the case in which the columns of A and W are sampled
from independent Dirichlet distributions with a constant concentration parameter α = 1. Note that,
by construction, the probability of creating a matrix A that has anchor words is zero under this data
generating process (“DGP”). We therefore refer to this data generating process for P as “No anchor
words”. Figure 3b reports results for (A,W) generated as in our “No anchor words” simulation, but
with all off-diagonal entries in the first K rows of A replaced with zeros (before re-normalizing the
columns of A to sum to one). This transformation ensures that under this DGP the resulting word-
topic matrix A has anchor words. We refer to this data generating process as “With anchor words”.
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In both figures we are reporting the fraction of simulations in which P has an anchor-word fac-
torization, with yellow indicating an anchor factorization exists in all realizations. A blue square for
a given combination of K and V indicates that P does not have an anchor factorization in any of its
realizations.

(a) No anchor words (b) With anchor words

Figure 3: Fraction of randomly generated matrices P = AW with an anchor word factorization for different
configurations of (V,K) and D = 100. Figure based on 500 simulations.

The numerical results are in line with the theoretical results discussed in Section 3. According to
Remark 2 any P with rank K = 2 admits an anchor word factorization. Similarly, when K = V any
matrix P = AW admits an anchor word factorization. This is reflected by the yellow square in the
bottom left of both panels. Next, we see that for K = 3 and V = 4 some realizations of (A,W) allow
an anchor word factorization, while others do not (cf. Figure 2). In the more general case (K > 2,
and V ∈ {10, 100}), we find that there does not exist an anchor word factorization in most realizations
(Figure 3a), unless we explicitly impose this structure on A (Figure 3b).

Finally, we study the effects of introducing varying degrees of sparsity in the word-topic matrix
A. To do so, we again start by creating the columns of both A and W as draws from independent
Dirichlet distributions with α = 1. We then randomly set ⌊βV⌋ entries in each column of A equal
to zero, where β ∈ [0, 1) and ⌊x⌋ denotes the integer part of x.7 For this exercise, we fix K = 3,
V = 100 and D = 100. This is depicted in Figure 4. With β = 0, our DGP is identical to the quadrant
of Figure 3 that corresponds to K = 3 and V = 100. In line with Figure 3a, we see that no anchor
word factorization exists across realizations when there is no sparsity. However, as the amount of
sparsity in A increases,the anchor word assumption is increasingly likely to hold, and for values of
β > 0.2 an anchor word factorization exists in almost all realizations.

7We disregard realizations of A in which entire rows are equal to zero. Effectively, these are realizations with a smaller
value of V and less sparsity.
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Figure 4: Fraction of realizations with an anchor word factorization as we vary the amount of sparsity in A.
Non-zero entries of the word-topic matrix A have a Dirichlet distribution with concentration parameter α = 1.
Figure based on 500 simulations.

4.2 Unknown P

In this section we conduct small scale simulations to analyze the case in which P is unknown and we
observe count data generated by the multinomial model in (8). In this case, we use the count data
to test for the existence of anchor words. Before presenting the results, we provide details on the
construction of the test statistic and the critical value that are used in this section.

4.2.1 Test statistic

We compute the test statistic T(Y) in Equation (22) as

T(Y) ≡ min
C∈CK

∥CP̂row
freq − P̂row

freq∥F,

where ∥ · ∥F denotes the Frobenius norm and P̂row
freq denotes the row-normalized term-document fre-

quency matrix. The (v,d)-entry of P̂row
freq is

(
nv,d/Nd

)/ D∑
d=1

(
nv,d/Nd

)
.

Two remarks are in order. First, as discussed after the statement of Theorem 2, the test statistic
T(Y) could have been computed using a different estimator for the row-normalized population term-
document frequency matrix. We use the simple row-normalized term-document frequency matrix
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because i) it is straightforward to implement, and ii) the uniform rates of estimation error reported in
Proposition 2 (in particular, Equation 50) suggest good performance relative to the other estimators
we analyzed. See Appendix (B.7) for the statistical properties of alternative estimators of Prow.

Second, as is evident from its definition, the computation of the test statistic T(Y) involves the
minimization of a quadratic objective function over the set CK, which is a set of bounded, real-valued
V × V matrices defined by 1 linear equality and 2V2 linear inequalities. We solve this optimization
problem in MATLAB® (version 2022b) using the function lsqlin.8

4.2.2 Critical Values

The test we presented in Theorem 2 uses the largest 1 − α quantile of the distribution of the test
statistic T(Y) that can be generated by matrices (A,W) that satisfy the null hypothesis. This critical
value is defined formally in Equation (23) and, in a slight abuse of notation, throughout this section
we simply denote it as q∗

1−α.
Theorem 2 shows that the test that rejects whenever the test statistic, T(Y), exceeds q∗

1−α has
correct size and nontrivial power. Although this test is useful to establish the testability of the anchor
words assumption, obtaining q∗

1−α in our application is extremely computationally demanding. For
instance, one could try to create either a deterministic or random grid of parameters (A,W) in Θ0,
and approximate q∗

1−α from below by the largest quantile for the random variable T(Y) over the grid.
This will require constructing a deterministic (or random) grid over matrices of dimension V × D

and K × V that satisfy the anchor word assumption. Due to the dimension of the parameter space, it
seems unlikely that one could generate a good approximation of q∗

1−α using this approach. Below,
we describe two computationally feasible approaches to obtain a bound on q∗

1−α.
• Algebraic Upper Bound for q∗

1−α. Lemma 4 in Appendix B.6 implies that, under the same
assumptions as in Proposition 2:

q∗
1−α ⩽ sup

C∈CK

∥C− IV∥F · Rγ(α), where Rγ(α) ≡

√√√√8
(
1− 1

V

)
γ2 · α

· V2

Nmin ·D
,

and γ ∈ (0, 1) is a constant such that for any (A,W) ∈ Θ,
∑D

d=1(AW)vd/D ⩾ γ/V for all v.
The first term in the bound has a closed-form solution and Rγ(α) can easily be computed for a

8The lsqlin function minimizes an objective function of the form f(x) ≡ ∥Cx − d∥2 (where x is a vector in Rn

and C is a matrix of dimension m × n and d is a vector of dimension m × 1) subject to a set of linear equalities and
inequalities. To use this function for our problem we vectorize the equation CP̂row

freq − P̂row
freq as

(ID ⊗ P̂row⊤
freq )vec(C) − vec(P̂row

freq),

and treat the choice variable x as vec(C). For reference, the computation of the test statistic takes only 137 and 58 seconds
respectively for the two corpora we consider in the application in Section 5.
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chosen value of γ. However, in our simulations we find that such an algebraic bound is extremely
conservative with poor power properties. We thus do not pursue this further.

• A “bootstrap bound” for q∗
1−α. For any matrix C ∈ CK we have that

T(Y) ⩽ ∥CP̂row
freq − P̂row

freq∥F

for any C ∈ CK (by the definition of T(Y)). Moreover, for any C ∈ CK we have

∥CP̂row
freq − P̂row

freq∥F = ∥(C− IV)(P̂row
freq − Prow) + CProw − Prow∥F.

Theorem 1 shows that for each P such that P = AW with (A,W) ∈ Θ0 there exists CP ∈ CK such
that CProw − Prow = 0V×D. Consequently,

T(Y) ⩽ ∥(CP − IV)(P̂row
freq − Prow)∥F. (27)

This means that for any (A,W) ∈ Θ0, the 1 − α quantile of T(Y) under P is upper bounded by the
1− α quantile of the random variable

∥(CP − IV)(P̂row
freq − Prow)∥F. (28)

In Appendix A.3 we show that one can approximate the distribution of (28) using a parametric boot-
strap that replaces CP by CP̂ where P̂ is an estimator of P that imposes the anchor-word assumption.

In particular, let Â and Ŵ denote estimators of the parameters (A,W) under the anchor word
assumption. Let P̂ ≡ ÂŴ denote the plug-in estimator for the population term-document frequency
matrix based on Â and Ŵ. Define Y∗

d as the random vector with distribution

Y∗
d ∼ Multinomial

(
Nd, (P̂)•d

)
, (29)

and assume that the columns of the matrix Y∗ ≡ (Y∗
1 , . . . ,Y

∗
D) are generated independently according

to (29).
Let P̂∗

freq denote the matrix of frequency counts associated with Y∗. That is, P̂∗
freq is the V × D

matrix with d-th column given by Y∗
d/Nd. Consider approximating the unknown distribution in (28)

by the distribution of the random vector

∥(CP̂ − IV)((P̂∗
freq)

row − P̂row)∥F, (30)

conditional on P̂. Theorem 3 in Appendix A.3 shows that the distribution of (30), conditional on
the data, is close in P-probability to the distribution of the bounding random variable in (28). To
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formalize this result we use the bounded Lipschitz metric (see p. 394 of Dudley (2002), and also
Chapter 2.2.3 and Chapter 10 in Kosorok (2007)) to measure closeness between the distributions in
(28) and (30). The bootstrap “consistency” is established under two high-level assumptions that can
be readily verified when V and D are fixed and Nmin grows to infinity, but we think could potentially
hold also in situations where V and D also grow with Nmin.

The bootstrap consistency result in Appendix A.3 thus suggests that the 1 − α quantile of (30)
can be used to implement a conservative, point-wise valid version of our test at significance level α.
Note that this procedure is computationally straightforward as CP̂ is only computed once and thus
there is no need to recompute the anchor word estimates across bootstrap simulations. Note also
that the bootstrap consistency in Theorem 3 essentially relies on a continuous mapping theorem; c.f.,
Proposition 10.7 Kosorok (2007) and, thus, there is no need for re-centering before getting the critical
value.

4.2.3 Results

In the previous subsection, we showed that it is possible to use a “bootstrap bound” for the critical
value of the test described in Theorem 2. We established the “consistency” of our bootstrap strategy;
but, unfortunately, the consistency holds only “pointwise” at a fixed (A0,W0) in the null hypothesis.
This means that the test based on the bootstrap upper bound need not have the correct size in finite
samples. With this in mind, we next present simulation results based on the same set of DGPs (”With
anchor words” and ”No anchor words”) as in Section 4.1 to asses the size and power of our proposed
bootstrap strategy. Throughout, we assume K is known a priori and correctly specified. To recap, the
“bootstraped” version of our test can be described as follows.

Step 1 Given the data Y, compute the test statistic T(Y) = minC∈CK
∥CP̂row

freq − P̂row
freq∥F.

Step 2 Obtain an estimate for P that has the anchor word factorization. Specifically:

(a) Since K is known, we follow the recommendation in Bing et al. (2020b) and run the
algorithm of Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu & Zhu (2013) on Y to
obtain Â0

(b) Let Ŵ0 be the Maximum Likelihood estimator of W in the multinomial model (8) but
treating Â0 as the true unknown A (Bing, Bunea, Strimas-Mackey & Wegkamp (2022)).

(c) Let P̂0 = Â0Ŵ0

Step 3 Since P̂0 has the anchor word factorization, the set CK(P̂0) is nonempty by Theorem 1. Solve
the Linear Program in (20) to obtain an element CP̂0

in this set.
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Step 4 Estimate the quantile of the upper bound T∗(Y) ≡ ∥(CP − IV)(P̂row
freq − Prow)∥F, using the boot-

strap.

(a) Simulate nsim new realizations of Y using P̂0.

(b) For each new realization Yi, obtain T∗
boots(Yi) ≡ ∥(CP̂0

− IV)((P̂i
freq)

row − P̂row
0 )∥F, for

i = 1 . . . ,nsim, where P̂i
freq is the row-normalized term-document frequency matrix based

on data Yi.

(c) Set critical value cvα to the (1− α)th percentile of T∗
boots(Yi).

Step 5 Reject the null hypothesis if T(Y) is larger than cvα

Figure 5 below presents the average power under ”No anchor words” and average rates of Type
I error under ”With anchor words” of the bootstrapped version of the test. In order to compute the
average performance of the test, we generate random draws from (A,W) using the same procedures
used to generate Figure 3. Then, for each of these draws, we sample the matrix of word counts, Y,
from the multinomial model in Equation (8), where each document contains 10, 000 words.

Figure 5a uses “No anchor words” (as described in the previous subsection) to generate draws
from (A,W). Since the probability of creating a matrix A that has anchor words is zero, the share of
realizations (Y,A,W) for which the bootstrapped test rejected the null can be interpreted as average
power. This means that, when V ∈ {10} and K ∈ {3, 4}, the bootstrapped version of the test has power
of 80-90%. On the other hand, we note that the average power seems to deteriorate substantially when
the vocabulary size increases.9

Figure 5a uses “With anchor words” (as described in the previous subsection) to generate draws
from (A,W), such that the word-topic matrix A always has an anchor word factorization. Reporting
the share of realizations of (Y,A,W) for which the bootstrapped test rejects the null gives a Monte-
Carlo approximation to the average rate of Type I error at a particular configuration (V ,K,D). The
figure thus suggests that the bootstrapped version of the test is conservative. Using a nominal 5%-test,
the largest average rate of Type I error of the test occurs when V = 4 and K = 3, in which case the
average rate of Type I error is 2%.

To further illustrate the power of the test, we next fix K = 6 and create the columns of both A

and W as draws from independent Dirichlet distributions with α = 1, while varying the document
sizes nd as well as the size of the vocabulary V . We then create 200 documents using draws from a
multinomial distribution based on the document probabilities P•d for each P. We then compute the
rejection frequency of our test. This is depicted for two different document sizes in Figure 6, where
we vary the size of the vocabulary along the x-axis.

9In section 5, we try to closely mirror the data-generating process of our application and present numerical evidence
that suggests our test is less conservative and has non-trivial power in our application.
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(a) No anchor words (Power of the test) (b) With anchor words (Type 1 error of the test)

Figure 5: Proportion of realizations (Y,A,W) in which our test rejects as we vary the number of words and
the number of topics. D = 100 and each document contains 10, 000 words. Figure based on 500 simulations
of (A,W).

Figure 6: Average power of our test as we vary the size of the vocabulary. We fix K = 6 and simulate 200
documents. Figure based on 100 simulations.

We again conclude that our test exhibits nontrivial power. On the other hand, the power of our test
deteriorates as V increases, for fixed dimensions D and K, especially for moderately sized documents.
We note that the fact that for a fixed K, the power of our test deteriorates as we increase V is consistent
with the results in Ding, Ishwar & Saligrama (2015). Their results essentially show that, as V increases
relative to K, any matrix A generated at random by a Dirchlet distribution will be “closer” to a matrix
with the anchor-word structure.
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5 Empirical Application

In this section we analyze a subset of the “transcripts” of the meetings of the Federal Open Mar-
ket Committee (FOMC), which is one of the main organs within the Federal Reserve System in
charge of setting monetary policy in the United States. We focus on the FOMC transcripts during the
“Greenspan period”, the 150 meetings from August 1987 to January 2006 in which Alan Greenspan
was chairman. As we explain below, we separate each transcript into two parts: the discussion of
domestic and international economic conditions (FOMC1) and the discussion of the monetary policy
strategy (FOMC2). This gives us two different corpora to analyze.

The first corpus (FOMC1) allows us to illustrate the potential benefits of assuming the existence
of anchor words in a concrete empirical application. Aside from the computational tractability and
the theoretical identification results that become available under the anchor word assumption, the
estimated anchor words can potentially provide natural and objective labels for the estimated topics.
We think this is an important point, as it has recently been argued that an inherent challenge of
topic models in empirical applications is that they “do not generate objective topic labels” and that
“A given topic consists of many words, and words are scattered across many topics, so the outputs

are often difficult to interpret.”; see the discussion in Section 3.2.2.1 of Ash & Hansen (2023). In
contrast, the anchor words for FOMC1 are all relatively easy to interpret. Moreover, the estimated
topic proportions for the FOMC1 corpus seem to be consistent with historical events that shaped
monetary policy decisions during the Greenspan period.

On the other hand, we find the estimates we obtain under the anchor word assumption for FOMC2
harder to interpret: anchor words for different topics have very similar meanings, and thus it becomes
difficult to understand the difference between topics. Further, with the exception of two topics, we
found it difficult to provide a rationale for the historical evolution of the topic shares. We would
like to argue that this is not a flaw of the method; instead we think it may be a warning about the
compatibility of the anchor words assumption and the true data generating process.

We then apply our suggested testing procedure to these two copora and indeed find that a nominal
5%-level test fails to reject the null hypothesis of anchor words for the FOMC1 corpus, but rejects for
the FOMC2 corpus.

The rest of this section is organized as follows. Section 5.1 presents a broad description of the
FOMC transcripts, along with some descriptive statistics for the FOMC1 and FOMC2 and corpora.
Section 5.2 presents the estimation results for the parameters of the topic model, assuming the exis-
tence of anchor words. This section also provides a detailed interpretation of the results. In Section
5.3 we then test the anchor word assumption in both corpora. Finally, Section 5.4 discusses the finite-
sample properties of the test.
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5.1 FOMC transcripts

The twelve members of the FOMC—seven members of the Board of Governors of the Federal Re-
serve System; the president of the Federal Reserve Bank of New York; and four of the remaining
eleven Reserve Bank presidents—convene regularly to discuss domestic and international economic
conditions, conditions in financial markets, and other factors considered relevant for monetary policy.
The purpose of this discussion is to make key decisions on the stance of monetary policy. The FOMC
Secretariat typically prepares a verbatim transcript of the FOMC meeting proceedings and conference
calls after their occurrence. In October 1993 the Federal Reserve decided to release past and future
transcripts of the FOMC.10 This is the most detailed record of the FOMC meeting and it is currently
released with a lag of five years.

We focus on the FOMC transcripts during the ”Greenspan period”, the 150 meetings from August
1987 to January 2006 in which Alan Greenspan was chairman. The transcripts can be obtained directly
from the website of the Federal Reserve. This dataset has been used recently in the work of Hansen
et al. (2018) (henceforth HMP) to study the effects of increased ‘transparency’ on the discussion
inside the FOMC when deciding monetary policy. We followed HMP in merging the transcripts for
the two back-to-back meetings on September 2003 and dropping the meeting on May 17, 1998.11 As
a result, we ended up with 148 transcripts.

We removed non-alphabetical words, words with a length of one, and common stop words. We
also constructed the 150 most frequent bigrams (combinations of two words) and 50 most frequent
trigrams (three words). We then stemmed all the words using a standard approach12.

We separate each transcript into two parts: the discussion of domestic and international economic
conditions (FOMC1) and the discussion of the monetary policy strategy (FOMC2). These sections are
not sign-posted, so we manually separated each transcript (we tried to match closely the separation
rules used by HMP and discussed in their work). At the end, we construct two separate term-document
matrices, one for each section. To reduce the size of the vocabulary, we follow Ke et al. (2022) and
further rank the remaining terms by their term frequency-inverse document frequency (tf-idf) score
and keep those with the highest tf-idf score (we also manually looked at these terms to ensure that
they were meaningful for our analysis). At the end we are left with 200 terms for FOMC1 and 150 for
FOMC2. The final two term-document matrices that we use for estimation have dimension 200× 148

and 150× 148 each.
We start by providing a high level overview of our data. First, Figure 7 plots the document size

10The speakers’ original words are lightly edited the speakers’ original words to facilitate the reader’s understanding.
In addition, a very small amount of information received on a confidential basis were subject to deletion.

11The beginning of the transcript for the May 17, 1998 meeting states: “No transcript exists for the first part of this
meeting, which included staff reports and a discussion of the economic outlook.”

12We used the Natural Language Toolkit (nltk) library in Python, its PorterStemmer package for word stemming,
and its Collocation package for the bigrams and trigrams.
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for each of the meetings included in our sample. The figure shows that documents in the FOMC1
corpus are typically larger: the average document size in the FOMC1 corpus is 2309, but only 853

for FOMC2. We also note that the number of words per meeting for FOMC1 exhibits a positive time
trend, while the size of the FOMC2 documents remained relatively stable over time.

(a) FOMC1 (b) FOMC2

Figure 7: Number of words per document in the FOMC1/FOMC2 corpora. The solid horizontal line represents
the average number of words per meeting. For reference, the grey bars represent recession dates, as reported by
the National Bureau of Economic Research.

Second, Figure 8 presents the “word cloud” corresponding to the vocabulary used in each corpus.
A word cloud is a convenient graphical representation of the frequency of each term in a corpus.
Terms that appear more frequently are depicted with a larger font size. The five highest terms in
each corpus are depicted in orange. Although the two corpora have a number of overlapping terms
(e.g., data, concern, expect, inflat, growth to name but a few), the word clouds suggest that the term
distributions in the two corpora are markedly different. This is consistent with the fact that the FOMC1
corpus focuses mainly on the description of the domestic and foreign economic conditions that are
relevant for monetary policy decisions, while FOMC2 focuses on the discussion of monetary policy
alternatives.

5.2 Anchor words in FOMC1 and FOMC2 corpora

5.2.1 Choosing K

Although the theory presented in Section 2 assumed the number of topics in the model to be known,
in practice K needs to be selected (a priori or a posteriori) by the researcher. As noted by Blei &
Lafferty (2009) “choosing the number of topics is a persistent problem in topic modeling and other
latent variable analysis. In some cases, the number of topics is part of the problem formulation and
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Figure 8: Word Cloud for the FOMC1/FOMC2 corpora. The five highest terms in each corpus are colored in
orange.

specified by an outside source. In other cases, a natural approach is to use cross validation on the error
of the task at hand (e.g., information retrieval, text classification).”

Bing et al. (2020a) have recently shown that the anchor words assumption allows the researcher
to estimate K and, under some regularity assumptions, guarantee that the estimator is consistent (it
coincides with the true number of topics with high probability).13 We thus estimate the number of
topics for the FOMC1 and FOMC2 corpus separately using the algorithm suggested by Bing et al.
(2020a), and obtain K̂FOMC1 = 4 and K̂FOMC2 = 5. In the remaining part of the application we estimate
the remaining parameters of the topic model using these numbers of topics as given.

5.2.2 Estimation of A

We start by reporting the estimates of A and W based on state-of-the-art algorithms that assume the
existence of anchor words.

To the best of our knowledge, the FOMC corpus has only been analyzed using the Latent Dirichlet
Allocation model of Blei, Ng & Jordan (2003) and the robust Bayes version of the algorithm recently
suggested by Ke et al. (2022)14. By reporting the model’s estimated parameters under the anchor
words assumption, we provide a novel estimate of the topics discussed in FOMC meetings and their
distributions. As discussed previously, the anchor word assumption avoids the identification issues
inherent to the Bayesian estimation via LDA and enables a straightforward interpretation of the topics.

Our results, however, suggest that—even without a formal statistical test—the estimates obtained
from imposing the anchor word assumption may appear more reasonable in some contexts than in

13We would like to thank the authors for kindly sharing their code to implement Algorithm 2 in Bing et al. (2020a).
14e.g., see Hansen et al. (2018) and Fligstein, Brundage & Schultz (2017)
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others. To us, this means that the anchor-words assumption may not always be appropriate, and that a
statistical test for the existence of anchor words could be a valuable tool for practitioners.

Estimated matrix A for FOMC1: Figure 9 presents word clouds summarizing the estimator of
A obtained from the FOMC1 corpus under the anchor word assumption. Terms that have a higher
estimated probability under a given topic are depicted in larger font sizes, and the five terms with the
highest probability appear in orange. Our baseline results are for the estimator suggested in Bing et al.
(2020b), which adapts to unknown sparsity of A, and is minimax optimal under some assumptions.15

The caption that appears below each subfigure presents the anchor words corresponding to each topic;
that is, the words that are exclusive to the topic represented by the word cloud.

A practical advantage of using the anchor word assumption in the estimation of A is that the anchor
words, along with the most frequent words in each topic, usually provide a simple interpretation
for the latent topic (and thus, a simple interpretation of the thematic structure in the corpus). For
example, we think that, without much controversy, we could label Topic 1 as “foreign conditions.”
The anchor word for this topic is “foreign” and the most frequent words on this topic—“export”,
“dollar”, “import”—can be associated to developments in foreign markets (such as changes in the
exchange rate, foreign demand, etc).

Topics 2 and 3 (which, using their anchor words, we can label “recoveri” and “uncertainty” re-
spectively) also have a straightforward interpretation. Topic 3 is an interesting finding given anecdotal
evidence on the importance that the themes of “risk and uncertainty” played on Alan Greenspan’s
framework for monetary policy.16

It is worth mentioning that the anchor words for each topic need not coincide with its most fre-
quent terms. For example, the anchor words in Topic 4 could, in principle, all be linked to goal of
maximum employment in the Federal Reserve’s policy mandate. However, none of the anchor words
appears in the five most frequent terms in the topic. In fact, the most frequent terms—“inflat”, “price”,
“increase”—are evocative of the goal of price stability, which is the other part of the Federal Reserve’s
dual mandate. Thus, one could label Topic 4 as the “dual mandate” topic.

In summary, we think that the four topics found in FOMC1——“foreign conditions”, “recoveri”,
“uncertainty”, and “dual mandate”—indeed uncover a reasonable thematic structure in the FOMC1
corpus.

15Appendix B.8 presents results for the estimators suggested in Arora, Ge & Moitra (2012), Ke et al. (2022), as well as
the Latent Dirichlet Allocation. Note that Arora, Ge & Moitra (2012)’s algorithm outputs a unique anchor word for each
topic, whereas Bing et al. (2020b)’s algorithm can output multiple anchor words for a topic. The topic estimates from
Arora, Ge & Moitra (2012) are similar to our baseline result, giving anchor words “wage”, “uncertainti” and “recoveri”
which are also anchor words in our baseline results. Ke & Wang (2022) and the LDA implementation don’t explicitly
impose anchor words assumption, and give estimates different from Bing et al. (2020b).

16See, for example, Alan Greenspan’s famous 2003 speech in Jackson hole enti-
tled “Monetary Policy Under Uncertainty”, available at the Federal Reserve’s website:
https://www.federalreserve.gov/boarddocs/speeches/2003/20030829/default.htm.
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Figure 9: Bing et al. (2020b)’s estimator of A in the FOMC1 corpus. Each panel shows the word cloud of
words of a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the
top 5 terms with largetst weights are colored. The estimated anchor words for each topic are in the caption.
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Estimated matrix A for FOMC2: Figure 10 presents word clouds summarizing the estimator of
A obtained from the FOMC2 corpus under the anchor word assumption. Recall that FOMC2 corpus
covers the discussion of the monetary policy strategy. While it is again possible to interpret and label
the topics using a combination of its anchor words and its most likely terms, we think that the results
are not as clear-cut as in FOMC1.

Before giving an interpretation of the word clouds, it is worthwhile to make a few comments about
i) the policy instruments that the FOMC has available to conduct monetary policy, and ii) the way in
which policy choices are usually communicated to both the public and the Open Market Trading Desk
at the Federal Reserve Bank of New York. Understanding both of these components is important for
the interpretation of the estimated FOMC2 topics.

• FOMC’s Policy instruments. Traditionally, the Federal Reserve’s policy actions referred mainly
to open market operations (buying or selling securities issued or backed by the U.S. government in
the open market) in order to keep a key short-term money market interest rate, called the federal funds

rate, at or near a desired target. It is common to think about this desired target for the federal funds
rate as the policy variable selected by the Federal Reserve. Currently the Federal Reserve sets and
announces a range for the target rate (for example, 5.00% to 5.25%), provides “forward guidance” to
markets, and makes choices regarding large-scale asset purchases.17

• FOMC’s Communication of Monetary Policy. At the conclusion of each FOMC meeting, the
Committee issues operating instructions to the Open Market Trading Desk at the Federal Reserve
Bank of New York (Thornton, Wheelock et al. (2000)). Also, after each meeting, the FOMC cur-
rently communicates its decision about the stance of monetary policy to the public. The format in
which the FOMC communicates the outcome of the meeting has changed over time. For example,
before 1994, the monetary policy decision of the FOMC was not immediately communicated to the
public. Instead, market participants had to infer the Federal Reserves’ actions from conditions in the
money market. Beginning in 1994 the Federal Reserve started issuing a statement immediately after
its meetings, but only if policy had changed. Starting in June 1999 such a statement was released
for every scheduled meeting, regardless of whether or not there was a policy change. Also, from
1983 through 1999, the instructions to the Open Market Trading Desk included a statement about the
Committee’s expectations for future changes in the stance of monetary policy, in addition to instruc-
tions for current policy. From Thornton (2006), “the statement pertaining to possible future policy
was known as the “symmetry,” “tilt,” or “bias,” of the policy directive. The directive was said to be
symmetric if it indicated that a tightening or an easing of policy were equally likely in the future.

17It is worth mentioning that the Federal Reserve has not always had an explicit operating target for the federal funds
rate, and has not always provided explicit forward guidance to markets participants. While the exact point in time at
which the Federal Reserve started using an explicit federal funds target rate is subject to some debate (Thornton 2006), it
is common to assume that the target for the federal funds rate summarized the FOMC’s deliberations about the monetary
policy stance throughout the Greenspan Period.
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Figure 10: Bing et al. (2020b)’s estimator of A in the FOMC2 corpus. Each panel shows the word cloud of
words of a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the
top 5 terms with largest weights are colored. The estimated anchor words for each topic are in the caption.
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Otherwise, the directive was said to be asymmetric toward either tightening or easing.”
Based on the discussion above, we can assign the label “asymmetric policy directive” to Topic 1,

given that the anchor word for Topic 1 is “asymmetr” and the top five words associated with this topic
are “asymmetr”, “move”, “policy”, “inflation”, and “data”. The estimated W for FOMC2 confirms
this topic is important in the meetings between 1987 and 1999 (cf. Figure 11), which seems quite
reasonable as the policy directive was explicitly communicated to the Open Market Trading Desk
(and was plausibly an important part of the FOMC deliberations).

Topic 3 and 4 also seem to be related to the FOMC communication (and their corresponding
anchor words are “sentenc” and “announc”), but their interpretation is less clear (beyond the fact that
they clearly relate to the communication of the policy choice to the public). We would expect these
topics to increase after the year 2000, when the statements became more detailed. We come back to
this point in the subsequent subsection when we discuss the estimated W for FOMC2. It is not quite
clear to us why Topics 3 and 4 are considered different by the model.

A similar point can be made about Topic 2 and Topic 5. Topic 2 includes both “target” and “rang”
as anchor words (thus suggesting explicit targeting of the federal funds rate), while Topic 5 has a an
anchor word “basi point” (which again is suggestive of explicit discussions about the target federal
funds rate).

In summary, we think that the interpretation of the FOMC2 topics is not very transparent, which
informally suggests that the anchor word assumption may not be appropriate for this corpus.

5.2.3 Estimation of W

We next report estimates of the matrix W, which contains the topic proportions in each document,
again estimating W separately in the FOMC1 and FOMC2 corpus. Our estimates of W are based on
the recent work of Bing et al. (2022), and correspond to the Maximum Likelihood estimator of W in
the multinomial model (8) but treating Â as the true unknown A.

Figure 11 presents the estimated topic proportions using a stacked bar graph. Since each FOMC
transcript is indexed by the day of its associated FOMC meeting, the x-axis in each graph is simply
a date stamp. At each of these dates, the stacked bars give the proportion that each of the meetings
assigned to each of the K latent topics (with the proportions adding to one by construction).

Estimated matrix W for FOMC1: Panel a) in Figure 11 presents the topic proportions corre-
sponding to the FOMC1 documents. The evolution of the topic proportions over time, and the label
of the topics, are consistent with historical events that shaped monetary policy decisions during the
Greenspan period. For example, it is well-known that Greenspan faced at least five periods of eco-
nomic turbulence during his tenure as chairman of the Federal Reserve: the October 1987 stock
market crash, the Asian financial crisis of 1997, the 9/11 terrorist attacks, and two US recessions (one
in the early 90’s and one in the early 2000’s, cf. Figure 7). The estimated matrix W shows that the

32



“uncertainty” topic increases around these dates. The “recoveri” topic also seems to become larger
after these events. Further, the share of the “foreign conditions” topic gets close to zero from 1992 to
1996, corresponding to the period between the Gulf War and the 1997 Asian Financial Crisis.

Estimated matrix W for FOMC2: Panel a) in Figure 11 presents the topic proportions corre-
sponding to the FOMC2 documents. The evolution of the topic proportions over time seems to be
more erratic than what we reported for FOMC1.

As we expected, Topic 1 (“asymmetric policy directive”) is very important before January 2000,
but practically disappears after this date. This is consistent with the fact that the FOMC decided to stop
communicating explicitly the likely direction or the timing of future policy moves to the public (and
instead decided to include the “Committee’s assessment of the balance of risks between heightened
inflation pressure and economic weakness over the foreseeable future”; see Thornton et al. (2000)).
Relatedly, Topic 3 (which has “sentence” as its anchor words, and “statement” as its most likely term)
has a very small share before January 2000, but it is the most important topic in the transcripts at the
end of the sample. We found it difficult to provide a rationale for the shares of the other topics in
FOMC2.
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Figure 11: Bing et al. (2022)’s estimator of W for FOMC1 and FOMC2. The topic labels are based on the
anchor words as explained in Section 5.2.2.

5.3 Testing the anchor words assumption

In the previous subsection we argued that the estimated parameters for FOMC1 admit a straightfor-
ward interpretation. The estimated anchor words provide a clear distinction between the topics, and
the estimated topic proportions are consistent with historical events that shaped monetary policy de-
cisions during the Greenspan period. We also noted that results for the FOMC2 corpus are markedly
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different: both the anchor words and the topics are difficult to interpret. With the exception of two
topics, we found it difficult to provide a rationale for the historical evolution of the topic shares. Moti-
vated by these results, in this section, we test the assumption of the existence of anchor words in both
the FOMC1 and FOMC2 corpus. Our main finding is that the assumption of anchor words is rejected
by a nominal 5%-level test in the FOMC2 corpus, but not in the FOMC1 corpus.

5.3.1 Test Statistic

As we mentioned before, the computation of the test statistic T(Y) involves the minimization of a
quadratic objective function over the set CK, which is a set of bounded, real-valued V × V matri-
ces defined by 1 linear equality and 2V2 linear inequalities We solve this optimization problem in
MATLAB® (version 2022b) using the function lsqlin. The computation of the test statistic in our
application takes only 137 seconds for FOMC1 and 58 seconds for FOMC2. The test statistics we
obtain for the FOMC1 and FOMC2 corpus are

T(YFOMC1) = .4938, T(YFOMC2) = .6401. (31)

5.3.2 Critical Values

As discussed in Section 4.2.2, obtaining the critical value used in the test of Theorem 2 in our ap-
plication is extremely computationally demanding. For instance, one could try to create either a
deterministic or random grid of parameters (A,W) in Θ0, and approximate q∗

1−α from below by the
largest quantile for the random variable T(Y) over the grid. In the FOMC1 corpus, this will require
constructing a deterministic (or random grid) over matrices of dimension 200 × 4 and 4 × 148 that
satisfy the anchor word assumption. Due to the dimension of the parameter space, it seems unlikely
that one could generate a good approximation of q∗

1−α using this approach. Below, we we report the
critical values based on the two computationally feasible approaches discussed in Section 4.2.2.

• Algebraic Upper Bound for q∗
1−α. Lemma 4 in Appendix B.6 implies that, under the same

assumptions as in Proposition 2:

q∗
1−α ⩽ sup

C∈CK

∥C− IV∥F · Rγ(α),

where

Rγ(α) ≡

√√√√8
(
1− 1

V

)
γ2 · α

· V2

Nmin ·D
,

and γ ∈ (0, 1) is a constant such that for any (A,W) ∈ Θ,
∑D

d=1(AW)vd/D ⩾ γ/V for all v. The
first term in the bound has a closed-form solution. Its value for FOMC1 is 31.50, and for FOMC2 is
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29.83. To compute the second term that appears in the upper bound, we just need to choose a value
of γ. The value of γ controls the magnitude of the row sums of the matrix AW uniformly in our
parameter space. We pick the value of γ using the estimated values of A and W under the anchor
word assumption. More precisely, we set

γ̂ ≡ V

2D
·minv∈V


D∑

d=1

(AW)vd

 ,

which is guaranteed to be smaller than or equal to 1/2.18

Using this formula, the bound for q∗
1−α in FOMC1 becomes 87.84/

√
α and the bound in FOMC2

becomes 197.65/
√
α. This means that, using this conservative critical value, we fail to reject the null

hypothesis of anchor words in both FOMC1 and FOMC2 for any significance level. This suggests
that the algebraic upper bound is overly conservative.

• A “bootstrap bound” for q∗
1−α. Finally, we compute the “bootstrap bound” for q∗

1−α discussed
in Section 4.2.2. In our application, computing the critical value using 1, 000 simulations takes 182
seconds for FOMC1 and 113 seconds for FOMC2. The 5%-critical values for FOMC1 and FOMC2
are 0.6310 and 0.6038 respectively. Comparing these critival values to our test statistics in (31), our
test rejects the null hypothesis of the existence of anchor words for FOMC1, but fails to reject it for
FOMC2.

5.4 Finite-Sample properties of the Test

We have shown that it is possible to use a “bootstrap bound” for the critical value of the test described
in Theorem 2. We established the “consistency” of our bootstrap strategy; but, unfortunately, the
consistency holds only “pointwise” at a fixed (A0,W0) in the null hypothesis. This means that the
test based on the bootstrap upper bound need not have the correct size in finite samples. With this in
mind, this section presents a small simulation study to analyze both the rate of Type I error and Type
II error of our test. The simulation is based on the setup of FOMC2 data. This means that we set
V = 150, D = 148, and we consider document sizes equal to each of the FOMC2.

• Type I error. We first analyze the rate of Type I error of the test that uses the test statistic
described in Section 4.2.1 and the critical value based on the “bootstrap” upper bound described in

18Note that for any v ∈ V

γ̂ ⩽
V

2D
·

D∑
d=1

(AW)vd.

Thus, adding both sides over v ∈ V implies

Vγ̂ ⩽
V

2
,

which implies γ̂ ⩽ 1/2.
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Section 4.2.2. To guarantee that the true data-generating process has anchor words and is compara-
ble to the Type II error discussed later, we do the following. We generate 1,000 arbitrary matrices,
{Pi}

1,000
i=1 , by sampling D = 148 independent columns from the Dirichlet distribution in RV and with

concentration parameter α = 1/200. We then generate multinomial counts according to Pi with a
large number of trials, and use the data to construct estimates A0i and W0i (according to our dis-
cussion in Sections 5.2.2 and 5.2.3 based on Arora et al. (2013), Bing et al. (2020b) and Bing et al.
(2022)). Specifically, we use the STM-TOP algorithm described in Bing et al. (2020b) with K = 5. In
the remaining part of this section, we use A0i,W0i, and K0 to denote the true model parameters used
in the simulation.

Using P0i = A0iW0i, we generate i = 1, . . . 1000 new matrices of counts Yi (of dimension V×D)
based on the multinomial model in (8), where each of these multinomial trials uses the true size of
the documents in the application. For each of these new matrices Yi, we compute our test statistic in
Equation (22) (as we have explained before, computing this statistic takes around 58 seconds for each
new dataset).

We then get, for each Yi, the “bootstrap bound” suggested in Section 4.2.2. Denote this critical
value by ci. The average rate of Type I error using this critical value (the share of simulations for
which T(Yi) > ci) is 3.7% for the nominal 5% test. Thus, the simulations suggest the critical value
based on the “bootstrap bound” is conservative at certain parameter space under the setup of the
FOMC2.

• Type II error/Power. Our claim in Theorem 2 is that the test suggested therein will have non
trivial power against at least one alternative. As we have discussed before, the critical value for this
test is not computationally feasible, so we analyze the power of the test that uses a critical value based
on the bootstrap upper bound discussed in Section 4.2.2.

We extract nonnegative matrix factorizations of {Pi}
1,000
i=1 using the standard nonnegative matrix

factorization routine in Matlab (which uses the KL-divergence as objective function, see the docu-
mentation of MATLAB®’s function nnmf). We use the nonnegative factors as the true data gener-
ating process (after normalizing the matrices to be column stochastic) and we denote them as A1i

and W1i. Letting P1i ≡ A1iW1i, we compute the value of infC∈CK
∥CProw

1i − Prow
1i ∥F (to confirm that

P1i does not have an anchor word factorization). The average value of this statistic is 0.0885, and
the 5% lower quantile is 0.0064. The average value of infC∈CK

∥CProw
1i − Prow

1i ∥F for concentration
parameters α = 1 and α = 0.1 are 0.0410 and 0.0585, respectively. These values also suggest that
using a concentration parameter equal to α = 1/200 will lead to a larger average power than α = 1

and α = .1. We now take A1i and W1i as the true data-generating process. The average power of
the test (the share of simulation draws for which T(Yi) > ci) that uses the critical value based on the
“bootstrap bound” is close to 71.2% for the 5% nominal test.
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6 Conclusion

In this paper we show that the existence of anchor words in topic models where 2 < K < min{V ,K}

is statistically testable: there exists a test for the null hypothesis that anchor words exist, that has
correct size and nontrivial power. This means that imposing the anchor-words assumption to identify
the parameters of a topic model cannot be viewed simply as a convenient normalization. A key result
to establish the statistical testability of the anchor-words assumption is Theorem 1. This theorem
shows that a column-stochastic matrix (with known nonnegative rank K) admits a separable factor-
ization if and only if the linear program suggested by Recht et al. (2012) to find a nonnegative matrix
factorization of separable matrices has a nonempty choice set.

We establish the statistical testability of the anchor-word assumption by constructing an explicit
test that has correct size in finite samples. Our Theorem 2 shows that our suggested test has non-
trivial power, provided a certain high-level condition is verified. We also show that our high-level
condition can be verified in settings where the size of the available documents is large enough. In
fact, Corollary 1 in Appendix A.2 provides primitive conditions under which our test is consistent (its
power approaches one) at any (A,W) for which the corresponding matrix P = AW does not have an
anchor-word factorization.

An unsatisfactory aspect about our constructive results is that the critical value we suggest for
the test in Theorem 2 is computationally infeasible in any realistic application. The computational
difficulties we face are in part due to the fact that testing whether there exists a nonnegative solution
to a large-scale system of linear equations—whose coefficients and ordinates may depend on the
unknown data distribution—is a difficult statistical problem. It is known that guaranteeing size control
while remaining computationally feasible is challenging; see Kitamura & Stoye (2018), Fang, Santos,
Shaikh & Torgovitsky (2023) and Bai, Santos & Shaikh (2022). In fact, Fang et al. (2023) have
recently devised a procedure for testing the abstract hypothesis that the unknown distribution of an
i.i.d sample satisfies a linear system of equations of the form Ax = β, where x is a nonnegative
(high-dimensional) vector and β depends on the distribution of the data. Unfortunately, their results
do not seem to be directly applicable to our problem as the characterization provided in Theorem
1 involves the linear equation CProw = Prow (which implies that both sides of the linear system of
interest depend on the true distribution of the data). An interesting question for future research is
whether some extension of their recommended testing procedure can be used to construct a test for
the existence of anchor words. Another question of interest is whether the “bootstrap bound” for the
critical value we suggest in Section 4.2.2 of this paper could be used for the problems considered in
Fang et al. (2023).

In order to show the applicability of our results, we test for the existence of anchor words in two
different datasets derived from the transcripts of the meetings of the Federal Open Market Commit-
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tee (FOMC). One corpus discusses domestic and international economic conditions, and one corpus
discusses possible monetary policy strategies. In the latter, we reject the null hypothesis that anchor
words exist. For this case, it would be an interesting exercise for future work to estimate a topic
model replacing the anchor-word assumption by some weaker condition that yields point identifica-
tion, and leads to a computationally tractable statistical procedure; for example, some version of the
sufficiently-scattered assumption discussed in Huang et al. (2013), Huang et al. (2016), and more
recently in Chen et al. (2022)

Finally, it is worth mentioning that the scope of the theoretical results established in this paper
may extend beyond applications of topic models to textual data. We discuss three concrete examples
below.

First, in a very interesting recent paper, Moran, Sridhar, Wang & Blei (2021) have shown that
the popular “deep generative models” (which are used for conducting unsupervised representation
learning in high-dimensional data) can be identified by assuming the existence of “anchor features”.
We think it would be interesting to study whether such an assumption (which is analogous to the
anchor-words assumption in topic models) has testable implications (and is, therefore, incompatible
with certain distributions of the data). We note that analogs of the anchor-word assumption are also
used in other areas of research.19

Second, Wang, Zhu & Wang (2023) have recently argued that the “in-context learning” capabilities
of large language models (LLMs) can be explained by viewing LLMs as topic models that implicitly
infer “task-related” information from a small number of examples. It would be interesting to think
about whether the reported sensitivity of the in-context learning capabalities of LLMs to “choice,
format, and even the order of the demonstrations used” reported in Wang et al. (2023) can be linked
to the identification (or the lack thereof) of topic models.

Third, we think it would be interesting to apply topic models (and the algorithms with optimal
statistical guarantees that have been designed to estimate them) to other types of nonnegative data
that arise in economics and econometrics.20 For example, suppose that in a market “d” there are a
continuum of consumers making choices over “V” discrete alternatives. The consumers that partic-
ipate in the market are heterogeneous in that, each of them, if offered a choice between the discrete
alternatives infinitely many times, will end up with different vectors of choice probabilities. A rea-
sonable assumption in this set up—to tractably model consumer heterogeneity—is that any given

19For example, in community detection, the anchor word assumption is replaced by a “pure-node” assumption, where
a pure node is a node that has a single community membership (Airoldi, Blei, Fienberg & Xing (2008), Mao, Sarkar &
Chakrabarti (2017)). In hyperspectral imaging, the anchor-word assumption is replaced by a ”pure pixel” assumption Ma,
Bioucas-Dias, Chan, Gillis, Gader, Plaza, Ambikapathi & Chi (2013). It would be interesting to think about the testable
implications of the anchor-word assumption in these contexts.

20There are already examples of applications of topic models for the analysis of textual data in empirical economic
research: Hansen et al. (2018), Larsen & Thorsrud (2019), Bybee, Kelly, Manela & Xiu (2021), Bybee, Kelly & Su
(2022), Djourelova (2023), Lopez-Lira (2023), among others.
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consumer can be assigned to one out of “K” different consumer types. Each of these types is in turn
characterized by a probability distribution (a topic) over the V discrete alternatives. Suppose that
the econometrician has consumer choice data for D markets. The question of how to use the market
shares to recover i) the choice probabilities associated to each type and ii) the proportion of different
types in each market is analogous to the estimation of the parameters of a topic model. It would be
interesting to analyze the usefulness of identification strategies based on the existence of “anchor-
alternatives”; that is, alternatives (or goods) that are only selected with positive probability by one of
the K consumer types.
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A Main Appendix

A.1 Proof of Theorem 1

Let Prow denote the “row-normalized” version of P. That is, Prow = R−1
P P where RP is the diagonal

matrix that contains the row sums of P. The proof of Theorem 1 uses the following lemma.

Lemma 1. A column-stochastic matrix P ∈ RV×D with nonnegative rank K ⩽ min{V ,D} admits

an anchor word factorization if and only if the following two conditions are met. First, there exists a

nonnegative matrix C̃ of dimension V × V such that

C̃Prow = Prow. (32)

Second, there exists a row permutation matrix Π of dimension V such that

ΠC̃Π⊤ =

[
IK 0

M̃ 0

]
, M̃ ⩾ 0 (33)

where M̃ ∈ R(V−K)×K has rows different from zero.

Proof of Lemma 1. First we show that if P admits an anchor word factorization then Equations (32)
and (33) are satisfied (this is the “ =⇒ ” side of the Lemma). The details are as follows. First,
if the column-stochastic matrix P ∈ RV×D with known nonnegative rank K has an anchor word
factorization, then there exist column-stochastic matrices (A0,W0) such that

P = A0W0, A0 ∈ RV×K
+ , W0 ∈ RK×D

+ , and

ΠA0 =

[
D

M

]
,

for some diagonal D ∈ RK×K
+ , M ∈ R(V−K)×K

+ , and some row permutation matrix Π. Because the
rows of P are all different to the vector 01×K, the row sum of MW0 is positive for all its rows, and so
are the row sums of W0.

Define M̃ as the matrix
M̃ ≡

(
RMW0

)−1
MRW0

, (34)

where RW0 is the diagonal matrix containing the row sums of W0 and RMW0 is the diagonal matrix
containing the row sums of MW0 (note that the inverse of RMW0

is well defined because the row
sums of MW0 are strictly positive).
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Define

C ≡

[
IK 0

M̃ 0

]
,

where M̃ is defined in Equation (34). Algebra shows that

CΠProw =

[
IK 0

M̃ 0

]
Π
(
R−1

P P
)

(by definition of Prow)

=

[
IK 0

M̃ 0

]
R−1

ΠPΠP
(
since ΠR−1

P P = R−1
ΠPΠP

)
=

[
IK 0

M̃ 0

]
R−1

ΠPΠA0W0 (since P has an anchor word factorization)

=

[
IK 0

M̃ 0

]
R−1

ΠP

[
D

M

]
W0. (since A0 has anchor words)

Since ΠP = ΠA0W0 =

[
D

M

]
W0, then

RΠP =

[
RDRW0

0

0 RMW0

]
.

Consequently,

CΠProw =

[
IK 0

M̃ 0

][
R−1

W0
R−1

D 0

0 R−1
MW0

][
D

M

]
W0

=

[
IK 0

M̃ 0

][
R−1

W0

R−1
MW0

M

]
W0 (where we have used the fact that RD = D)

=

[
R−1
W0

W0

M̃R−1
W0

W0

]

=

[
R−1
W0

W0(
RMW0

)−1
MW0

] (
where we have used the definition of M̃

)

=

[D
M

]
W0

row (
since(RDW0

)−1DW0 = R−1
W0

W0

)
= (ΠP)

row
= ΠProw.

(
since ΠR−1

P P = R−1
ΠPΠP

)
Thus, we have showed that if P has the anchor word factorization then there exists M̃ and Π such
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that C̃Prow = Prow, where C̃ ≡ Π⊤

[
IK 0

M̃ 0

]
Π.

Now we show that if Equations (32) and (33) are satisfied, then P has an anchor word factorization
(this is the “ ⇐= ” part of the Lemma). Suppose there exists M̃ ⩾ 0 (with rows different from zero)
and a row permutation matrix Π such that

C̃Prow = Prow and ΠC̃Π⊤ =

[
IK 0

M̃ 0

]
. (35)

We show that P has an anchor word factorization (and we give an explicit formula for the factors).
Since ΠTΠ equals the identity matrix of dimension V , Equation (35) implies that

ΠTΠC̃ΠTΠProw = R−1
P P.

If we left-multiply the equation above by RP and use the definition of C̃ in Equation (35), we obtain
the expression

RPΠ
⊤

[
IK 0

M̃ 0

]
ΠProw = P.

Left multiply this equation by Π⊤Π. Since ΠRPΠ
⊤ = RΠP we get

Π⊤RΠP

[
IK 0

M̃ 0

]
R−1

ΠPΠP = P (36)

where we have used that ΠProw = R−1
ΠPΠP.

Partition ΠP as

[
P̃1

P̃2

]
where P̃1 is K×D and P̃2 is (V − K)×D. From Equation (36) we have

P = Π⊤

[
RP̃1

0

0 RP̃2

][
IK 0

M̃ 0

]R−1

P̃1
0

0 R−1

P̃2

[P̃1

P̃2

]

= Π⊤

[
RP̃1

0

0 RP̃2

]IKR−1

P̃1
0

M̃R−1

P̃1
0

[P̃1

P̃2

]

= Π⊤

 IK 0

RP̃2
M̃R−1

P̃1
0

[P̃1

P̃2

]
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= Π⊤

 IK
RP̃2

M̃R−1

P̃1

 P̃1

Let D∗ be the diagonal K×K matrix containing the column sums of the nonnegative matrix

 IK
RP̃2

M̃R−1

P̃1

.

Note then that we can define

A0 ≡

 IK
RP̃2

M̃R−1

P̃1

D∗−1 ∈ RV×K,

A∗
0 ≡ ΠTA0,

W∗
0 ≡ D∗P̃1 ∈ RK×D,

and, by construction,
P = A∗

0W
∗
0 = Π⊤A0W

∗
0 .

Note that A∗
0 is simply a row permutation of A0 and that A0 is a column-stochastic matrix that has the

form

[
D

M

]
, where D is a diagonal matrix and M has all of its rows different from zero. We just need

to show that W∗
0 is column stochastic. The matrix W∗

0 is clearly nonnegative, so we just need to show
that 1⊤KW

∗
0 = 1D where 1K and 1D are the column vector of ones of dimension K and D respectively.

But this follows simply because ΠP is column stochastic and 1D = 1⊤VΠP = 1⊤VA0W
∗
0 = 1⊤KW

∗
0 .

Thus, we have found an anchor word factorization for the matrix P using the factors A∗
0 and W∗

0 .

Lemma 2. A column-stochastic matrix P ∈ RV×D with nonnegative rank K ⩽ min{V ,D} admits a

rank K anchor word factorization—in the sense of Definition 2—if and only if

C0
K(P) ≡ C0

K ∩
{
C ∈ RV×V | CProw = Prow

}
̸= ∅, (37)

where
C0
K(P) ≡ { C ∈ RV×V | C ⩾ 0,

CProw = Prow

tr (C) = K,

cjj ∈ {0, 1}, for all j = 1, . . . ,V ,

cij ⩽ cjj, for all i, j = 1, . . . ,V}.

(38)
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Proof of Lemma 2. By definition, the set CK(P) in Equation (37) can be written as

C0
K(P) ≡ { C ∈ RV×V | C ⩾ 0,

CProw = Prow

tr (C) = K,

cjj ∈ {0, 1}, for all j = 1, . . . ,V ,

cij ⩽ cjj, for all i, j = 1, . . . ,V}.

(39)

First we show that if the set C0
K(P) is nonempty, then P has an anchor word factorization (this is the

“ ⇐= ” part of the Lemma). Suppose C∗ is an element of C0
K (P). Note that, by definition C∗ has K

diagonal elements equal to 1 and V − K elements equal to zero. Let J∗ ⊆ {1, ...,V} be the indexes j
for which C∗

jj = 1 and let C∗
j• denote the jth row of C∗.

Let 1V and 1D denote the column vector of ones of dimension V × 1 and D × 1 respectively.
Because Prow1D = 1V due to the row normalization, then C∗ is row normalized. This follows from:

C∗Prow = Prow =⇒ C∗Prow1D = Prow1D =⇒ C∗1V = 1V .

Consequently, because C ⩾ 0, for any j ∈ J∗, C∗
j• is the jth row of the identity matrix of dimension V ,

denoted IV .
For any J ∈ {1, ...,V} \ J∗ we also have that the jth column of C∗, denoted C∗

•j equals zero. This
follows because 0 ⩽ C∗

ij ⩽ C∗
jj (by definition of the choice set of j) and C∗

jj = 0 ∀j ∈ {1, ...,V} \ J∗.
This means that C∗ has V − K columns equal to zero.

Note then that there exists a permuation matrix Π such that Π∗C∗Π∗⊤ =

[
IK 0

M̃ 0

]
where M̃ ⩾ 0.

Lemma 1 then shows that P has an anchor word factorization.
Now we show that if P has the anchor word factorization then C0

K(P) ̸= ∅ (this is the “ =⇒ ” part
of the Theorem). Suppose P has an anchor word factorization. By Lemma 1, this implies there exists
a nonnegative matrix C̃ such that

C̃Prow = Prow (40)

and a permutation matrix Π of dimension V such that

ΠC̃Π⊤ =

[
IK 0

M̃ 0

]
, M̃ ∈ R(V−K)×K,

with rows different from zero. Let Tr(·) denote the trace operator. Note that Tr
(
C̃
)

= K since
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Tr
(
C̃
)
= Tr

(
C̃Π⊤Π

)
. Note also that the diagonal elements of C̃ are either {0, 1} since

e⊤j C̃ej = e⊤j C̃ej = e⊤j Π
⊤

[
IK 0

M̃ 0

]
Πej

which equals 0 or 1 depending on the column selected by Π•j.
Finally, we show that C̃ij ⩽ C̃jj ∀i, j. To see this, note first that (40) implies

C̃Π⊤ΠProw = Prow,

which in turn implies [
IK 0

M̃ 0

]
ΠProw = ΠProw.

Thus, the elements of M̃ are at most one. Note that

C̃ij = e⊤i C̃ej = e⊤i Π
⊤

[
IK 0

M̃ 0

]
Πej.

If Πej ≡ Π•j selects a “zero” column of ΠC̃ΠT , then clearly C̃ij ⩽ C̃jj ∀i. If Π•j selects a non-zero
column of C̃, then C̃ij ⩽ C̃jj ∀i, since M̃ has elements bounded above by one.

Definition 4. Given a set S ⊆ RD
+ , we denote conv(S) as the convex hull of S that is, the set of

all points that can be obtained by taking convex combinations of points in S. Additionally, we let

convDim(S) denote the convex dimension of S that is, the size of the smallest subset T ⊆ S such that

conv(T) = conv(S).

Lemma 3. Assume P ∈ RV×D
+ is a column-stochastic matrix with nonnegative rank K ⩽ min{V ,D}.

If

C0
K(P) ≡ C0

K ∩
{
C ∈ RV×V | CProw = Prow

}
= ∅ (41)

where C0
K is defined as Lemma 2, then convDim({(Prow

1,• )
⊤, . . . , (Prow

V ,•)
⊤}) > K.

Proof. We establish the contrapositive; namely, that if convDim({(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤}) > K, then
C0
K(P) ̸= ∅.

Since convDim(Prow
1 , ...,Prow

V ) ⩽ K, we know that there exist K vectors in {(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤}

such that all other vectors can be written as a convex combination of them. Let these vectors be
(Prow

α1,•)
⊤, ..., (Prow

αK,•)
⊤, where α1 < . . . < αL is a subset of {1, . . . ,V}. By definition of convex

combination, for any j ⩽ K, Prow
j,• =

∑K
i=1 jiP

row
αi,• with 0 ⩽ ji ⩽ 1 and

∑K
i=1 ji = 1.

We now construct a C ∈ C0
K(P). For i ∈ {α1, ...,αK}, let Cii = 1 and for j ̸= i, Cij = 0. For
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i, j /∈ {α1, ...,αK}, set Cij = 0. Finally, for i /∈ {α1, ...,αK} and j ∈ {α1, ...,αK}, Cij = j1. By
construction, CP = P and C ∈ C0

K.

Proof of Theorem 1. In light of Lemma 2, it suffices to show that

C0
K(P) ̸= ∅ ⇐⇒ CK(P) ̸= ∅. (42)

The “ =⇒ ” part of Equation (42) follows directly from the relation

C0
K(P) ⊆ CK(P).

To establish the “ ⇐= ” part of Equation (42) we use the contrapositive; namely, that

C0
K(P) = ∅ =⇒ CK(P) = ∅. (43)

By Lemma 3, C0
K(P) = ∅ implies that L ≡ convDim(Prow) > K. It is thus sufficient to show that for

any C ∈ RV×V satisfying

C ⩾ 0, CProw = Prow, cii ⩽ 1, cji ⩽ cii, i, j = 1, . . . ,V , (44)

we must have tr(C) ⩾ L; thus implying that CK(P) is empty.
Define a loner of a row-normalized matrix as a row r which is not a convex combination of at

least two rows, r ′, r ′′, with r ̸= r ′ and r ̸= r ′′. By Definition 4 there exists L > K different vectors in
RD:

p1, ...,pL,

such that PL ≡ {p1, ...,pL} is the smallest subset of P ≡ {(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤} ⊆ RD
+ for which we

have conv(PL) = conv(P). Note that the loners in Prow—after being transposed to become elements
of RD—must contain the set {p1, ...,pL} (since, by definition, each of the elements of PL correspond
to transposed loners of Prow).

Consider the correspondence f that maps each of the elements pl ∈ PL to subsets of P according
to

f(pl) ≡ {p ∈ P | pl = p}

= {(Prow
i,• )

⊤ ∈ P | pl = (Prow
i,• )

⊤, for some 1 ⩽ i ⩽ V}.

Thus, f(pl) collects all the elements of P that are equal to pl. Note that the correspondence is
nonempty, as it satisfies pl ∈ f(pl) for every l = 1, . . . ,L. Note also that for any l, l ′ ∈ {1, . . . ,L},
l ̸= l ′ we have f(pl) ∩ f(pl ′) = ∅.
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For each l = 1, . . .L, let r(l) denote a row of the matrix Prow for which

pl = (Prow
r(l),•)

⊤.

For any C satisfying (44) we must have that for every l = 1, . . . ,L

Cr(l),•P
row = p⊤

l = Prow
r(l),•. (45)

Since the tranpose of pl is a loner of Prow, then

cr(l),i ̸= 0 ⇐⇒ (Prow
i,• )

⊤ ∈ f(pl).

This means that the only rows of Prow that can be used to express pl are the elements of f(pl). Since
all the elements of f(pl) equal pl, then

Cr(l),•P
row =

 ∑
{i|cr(j),i ̸=0}

Cr(l),i

p⊤
l . (46)

Equations (45) and (46) imply ∑
{i|cr(j),i ̸=0}

cr(j),i = 1.

Noting that for any C satisfying (44) we have cji ⩽ cii, then:

1 =
∑

{i|cr(l),i ̸=0}

cr(l),i ⩽
∑

{i|cr(l),i ̸=0}

ci,i =
∑

{i|(Prow
i,• )

⊤∈f(pl)}

ci,i.

To conclude the proof simply note that because the elements of C are nonnegative

tr(C) =
V∑
j=1

cj,j ⩾
L∑

l=1

 ∑
{i|(Prow

i,• )
⊤∈f(pl)}

ci,i

 ⩾ L.

This implies that any C satisfying (44) must have tr(C) ⩾ L > K, implying CK(P) = ∅. This
establishes (43).
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A.2 Verification of the high-level assumption in Theorem 2.

• Term i) The characterization result in Theorem 1 readily implies that the term in i) is strictly positive
for any pair (A,W) for which the product AW does not admit an anchor-word factorization. This
follows by Remark 4 and the fact that the “inf” is attained (which we established in Appendix B.3).
Thus, we can write the term in i) as a scalar f(V ,D,K,AW) > 0. We note this term does not depend
on the size of the documents.
• Term ii) The term ii) depends explicitly on the estimation error

P̂row − (AW)row. (47)

The submultiplicativity of Frobenius norm implies that the term in ii) is bounded above by

C∗(V ,K) · ∥P̂row − (AW)row∥, where C∗(V ,K) ≡ sup
C∈CK

∥(C− IV)∥. (48)

Since the space CK is compact (see Appendix B.3), C∗(V ,K) is finite. Thus, the term in ii) will be
small if P̂row is close to (AW)row with high probability.
• Term ii) Finally Lemma 4 in Appendix B.6 shows that

q∗
1−α(V ,D,K,ND) ⩽ C∗(V ,K) · q̃∗

1−α, (49)

where q̃∗
1−α is the “worst-case” 1 − α quantile of the random variable ∥P̂row − (AW)row∥ when

(A,W) ∈ Θ0.
In the remaining part of this subsection we show that under minimal regularity conditions on the

parameter space Θ one can guarantee that ∥P̂row − (AW)row∥ is small with high probability—and
consequently that both (48) and (49)are small—regardless of whether the parameters (A,W) belong
to Θ0 or Θ1. An important implication of the results in this section is that the plausibility of the
high-level assumption in (26) depends crucially on the estimator P̂row used to implement the test.

We will need some additional notation. Given the true parameters of the model, (A,W), we define
the v-th row sum of the population term-document frequency matrix as

pv(A,W) ≡
D∑

d=1

pvd,

where pvd is the (v,d)-entry of P = AW. Note that pv is used to row-normalize the matrix P. As
defined before, let Nmin to be smallest document size; that is, the minimum of {N1, . . . ,ND} and
suppose that ∥ · ∥ is the Frobenius norm.

Let P̂freq the V × D matrix with (v,d)-entry given by nvd/Nd. Let P̂row
freq the row-normalized
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version of this estimator. In Appendix B.7.1 we establish the following proposition:

Proposition 2. Fix an arbitrary γ ∈ (0, 1). For any (A,W) such that pv(A,W)/D ⩾ γ/V for all v:

∥P̂row
freq − (AW)row∥ ⩽ Rγ(ϵ) ≡

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin ·D
, (50)

with probability at least 1− ϵ.

Thus, the estimator that row-normalizes that empirical frequencies is expected to have a small
estimation error, ∥P̂row − (AW)row∥, with high probability provided

V2

Nmin ·D

is small. We next use Proposition (2) to show that the high-level condition in Theorem 2 will be
verified when Nmin is large.

Corollary 1. Fix an arbitrary γ ∈ (0, 1). Let Θ consist of all matrices (A,W) for which pv(A,W)/D ⩾

γ/V for all v.21 Then for any parameter value (A,W) ∈ Θ1 for which P = AW does not have an

anchor-word factorization we have that, for fixed (V ,K,D), the probability in (26) converges to one,

as Nmin → ∞. Moreover,

E(A,W)[ϕ
∗(Y)] → 1,

as Nmin → ∞.

Proof. Equations (48) and (49) imply that the probability in (26) is bounded below by

P(A,W)

(
inf

C∈CK

∥(C− IV)(AW)row∥ > C∗(V ,K)q̃∗
1−α(V ,D,K,ND) + C∗(V ,K) · ∥P̂row

freq − (AW)row∥
)
.

Proposition 2 readily implies that
q̃∗
1−α ⩽ Rγ(α).

Thus, the probability in (26) can be further bounded below by the probability of the event

E1 ≡
{

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V ,K)
[
Rγ(α) + ∥P̂row

freq − (AW)row∥
]}

.

The term
inf

C∈CK

∥(C− IV)(AW)row∥

21This rules out words in the vocabulary that occur extremely infrequently.
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does not depend on ND. Moreover, Remark 4 after Theorem 1 implies that for any AW that does not
admit an anchor word factorization we have

inf
C∈CK

∥(C− IV)(AW)row∥ > 0.

The definition of the function Rγ(·) then implies that for any ϵ > 0 there exists Nϵ large enough such
that Nmin > Nϵ implies

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V ,K)
[
Rγ(α) + Rγ(ϵ)

]
. (51)

Then, whenever Nmin > Nϵ, Equation (51) implies that event

Eϵ ≡
{
∥P̂row

freq − (AW)row∥ ⩽ Rγ(ϵ)
}
.

is a subset of E1, as whenever event Eϵ occurs we have

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V ,K)
[
Rγ(α) + Rγ(ϵ)

]
⩾ C∗(V ,K)

[
Rγ(α) + ∥P̂row

freq − (AW)row∥
]

Since, by definition of Rγ(ϵ) we have

P(A,W)(Eϵ) ⩾ 1− ϵ,

we conclude that the probability in (26) converges to 1 as Nmin → ∞. The last statement in the
corollary follows because E(A,W)[ϕ

∗(Y)] is lower bounded by (26).

A.3 Critical Values based on the Parametric Bootstrap

For any matrix A, we use vec(A) to denote the vectorization of A. Define RND
as the V × D

diagonal matrix with elements (
√
N1, . . . ,

√
ND) and let FND,V ,D,P denote the distribution of the

random vector
vec
(
RND

(P̂row
freq − Prow)

)
. (52)

The distribution FND,V ,D,P is indexed by P since the distribution of (52) assumes that the matrix P

generated the text data. We remind the reader that the superindex “row” denotes row normalization.
Let Â0 and Ŵ0 denote estimators of the parameters (A,W) under the anchor word assumption.

As we have done throughout the paper, let P̂0 ≡ Â0Ŵ0 denote the plug-in estimator for the popu-
lation term-document frequency matrix based on Â0 and Ŵ0. Define Y∗

d as the random vector with
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distribution
Y∗
d ∼ Multinomial

(
Nd, (P̂0)•,d

)
, (53)

and assume that the columns of the matrix Y∗ ≡ (Y∗
1 , . . . ,Y

∗
D) are generated independently according

(53).
Let P̂∗

freq denote the frequency count associated to Y∗. That is, P̂∗
freq is the V ×D matrix with d-th

column given by Y∗
d/Nd and let F̂ND,V ,D denote the distribution of the random vector

vec
(
RND

((P̂∗
freq)

row − P̂row
0 )
)
, (54)

conditional on P̂0.
To define bootstrap consistency (which involves the asymptotic behavior of conditional distribu-

tions) we use the bounded Lipschitz metric, see p. 394 of Dudley (2002), and also Chapter 2.2.3 and
Chapter 10 in Kosorok (2007). For any Borel distributions P and Q over a euclidean space Rs (with
s ⩾ 1) define

βs (P,Q) ≡ sup
f∈BL1(s)

∣∣EP[f(X)] − EQ[f(X)]
∣∣ , (55)

where BL1(s) is the space of functions f : Rs → R such that a) supx |f(x)| < ∞ and |f(x) − f(y)| ⩽

∥x− y∥.
We make the following high-level assumptions:

Assumption 1-Bootstrap: For any (A0,W0) ∈ Θ0

βV·D

(
FND,V ,D,A0W0

, F̂ND,V ,D

)
→ 0

in P0 ≡ A0W0-probability, as Nmin → ∞.
Assumption 1-Bootstrap (henceforth, A1-B) simply states that the bootstrap “consistenly esti-

mates” the distribution of the properly scaled, row-normalized frequency counts. While it is possible
to establish Assumption A1-B under more primitive conditions, we use the high-level condition to
simplify the exposition of our results. We think that stating a high-level assumption allows for a bet-
ter understanding of the conditions that are needed to ensure the validity of our suggested bootstrap
procedure.

Assumption 2-Boostrap: Let M̂ is a VD× VD random matrix such that for some matrix M

||M̂−M||F → 0

in P0 ≡ A0W0-probability, as Nmin → ∞. Then, for any ϵ > 0
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PX∼F̂ND,V,D

(∣∣∣∥M̂X∥F − ∥MX∥F
∣∣∣ > ϵ

)
→ 0 (56)

in P0 ≡ A0W0-probability, as Nmin → ∞.
Assumption 2-Bootstrap (henceforth, A2-B) simply states that if M̂ and M are close to each

other in P0-probability, then the conditional laws of ∥M̂X∥F and ∥MX∥F—where X has distribution
F̂ND,V ,D—are also close to each other in P0-probability. If the distribution of X were not indexed by
both the data and the sample size, then Assumption 2-B would be a direct consequence of the Contin-
uous Mapping Theorem; e.g., Proposition 10.7 in Kosorok (2007), after verifying that X is bounded in
probability. Since in our case X is the bootstrapped distribution of the properly-scaled, row normalized
frequency counts, verifying Assumption 2-B directly requires verifying stronger assumptions.22

We now use assumptions AB-1 and AB-2 to establish the consistency of our bootstrap strategy.
Let GND,V ,D,P0

denote the distribution of the scalar

√
Nmin · ∥(CP0

− IV)(P̂row
freq − Prow

0 )∥F, (57)

assuming that the data was generated by a matrix P0 that satisfies the anchor word assumption, and
that CP0

is the matrix that satisfies

∥CP0P
row
0 − Prow

0 ∥ = 0.

Such a matrix exists by Theorem 1.
Let ĜND,V ,D denote the distribution of the scalar

√
Nmin · ∥(CP̂0

− IV)(P̂∗
freq)

row − P̂row
0 )∥F, (58)

conditional on P̂0.
22For example, one could check whether the expectation under the bootstrap distribution of the random variable X is

bounded in P0-probability or P0-almost surely. By Markov’s inequality, (54) is bounded above by

1

ϵ
E
X∼F̂ND,V,D

[
∥X∥F

] ∥∥∥M̂−M
∥∥∥
F
.

If the sequence of random variables E
X∼F̂ND,V,D

[
∥X∥F

]
is tight (when the data is generated by P0), then Assumption

2-B follows. Alternatively, we could impose a tightness-like assumption not on the sequence of expectations, but on the
collection of conditional distributions of X: assume for any λNmin → ∞ as Nmin → ∞,

P
X∼F̂ND,V,D

(
∥X∥F > λNmin

)
→ 0

in P0 probability. Then the left-hand side of (54) is bounded above by

P
X∼F̂ND,V,D

(
∥X∥F > ϵ/∥M̂−M∥F

)
.
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Theorem 3. Suppose that Assumptions 1-B and 2-B hold and that

CP̂0
− CP0

→ 0

in P0 ≡ A0W0-probability. Then, for any (A0,W0) ∈ Θ0

β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
→ 0

in P0 ≡ A0W0-probability, as Nmin → ∞.

Proof. Broadly speaking, the proof is based on an application of a (Lipschitz) continuous mapping
theorem; c.f., Proposition 10.7 in Kosorok (2007). In essence, we use the Lipschitz continuity of ∥·∥F
and Assumptions 1-B and 2-B to show that the law of (57) and the (conditional) law of (58) are close
to each other—with high probability—in terms of the Bounded Lipschitz metric. We establish this
proof in three steps.

STEP 1: We first establish two Lipschitz continuity properties of ∥ · ∥F that will be used in the proof.
Note first that for any matrix M the mapping

x ∈ RV 7→ ∥Mx∥F

is Lipschitz continuous with constant ∥M∥F:

∥Mx∥F − ∥My∥F = ∥M(x− y) +My∥F − ∥My∥F
⩽ ∥M(x− y)∥F
⩽ ∥M∥F∥x− y∥F.

An analogous argument shows that for any x ∈ Rv the mapping

M ∈ RV×V 7→ ∥Mx∥F

is Lipschitz continuous with Lipschitz constant ∥x∥F.

STEP 2: Let G̃ND,V ,D denote the distribution of the scalar

√
Nmin · ∥(CP0

− IV)(P̂∗
freq)

row − P̂row
0 )∥F, (59)

conditional on P̂0. The conditional distribution of (59) differs from (58) in that the former uses CP0
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as opposed to CP̂0
.

Since the scaling matrix RND
is invertible (for it is a diagonal matrix with strictly positive diagonal

elements), then

√
Nmin · ∥(CP0

− IV)(P̂row
freq − Prow

0 )∥F = ∥M̃ND,P0
RND

(P̂row
freq − Prow

0 )∥F,

where M̃ND,P0
≡ (CP0

− IV)(
√
NminR

−1
ND

). Moreover, because the Frobenius norm of a matrix is the
same as the Frobenius norm of its vectorization, then

∥M̃ND,P0
RND

(P̂row
freq − Prow

0 )∥F =

∥∥∥∥MND,P0
vec
(
RND

(P̂row
freq − Prow

0 )
)∥∥∥∥

F

,

where MND,P0
≡
(
ID ⊗ M̃ND,P0

)
. Therefore,

β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
equals

sup
f∈BL1(1)

∣∣∣∣EX∼FND,V,D,A0W0
[f(∥MND,P0

X∥F)] − EX∼F̂ND,V,D
[f(∥MND,P0

X∥F)]
∣∣∣∣ .

By Step 1 the function ∥MND,P0
X∥ is Lipschitz with constant ∥MND,P0

X∥F. Therefore, if we use
BLc(s) to denote the space of Lipschitz functions f : Rs → R such that a) supx∈R2 |f(x)| < ∞ and b)
|f(x) − f(y)| ⩽ c∥x− y∥ then

β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
is smaller than or equal

sup
f∈BL∥∥∥∥MND,P0

∥∥∥∥
F

(V·D)

∣∣∣∣EX∼FND,V,D,A0W0
[f(X)] − EX∼F̂ND,V,D

[f(X)]

∣∣∣∣ ,
which equals ∥∥∥MND,P0

∥∥∥
F
βV·D

(
FND,V ,D,A0W0

, F̂ND,V ,D

)
.

Since, by definition
MND,P0

=
(
ID ⊗ (CP0

− IV)(
√
NminR

−1
ND

)
)

and the diagonal elements of (
√
NminR

−1
ND

) equal
√
Nmin/Nd < 1, then ∥MND,P0

∥F is a bounded
sequence as Nmin → ∞. From Assumption 1-B, we conclude that
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β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
→ 0

in P0 ≡ A0W0 probability.

STEP 3: To finish the proof it suffices to show that

β1

(
G̃ND,V ,D , ĜND,V ,D

)
→ 0

in P0 ≡ A0W0 probability.

By definition
β1

(
G̃ND,V ,D , ĜND,V ,D

)
equals

sup
f∈BL1(1)

∣∣∣∣EX∼F̂ND,V,D
[f(∥MND,P0

X∥F)] − EX∼F̂ND,V,D
[f(∥M̂ND,P0

X∥F)]
∣∣∣∣ ,

where
M̂ND,P0

≡
(
ID ⊗ (CP̂0

− IV)(
√
NminR

−1
ND

)
)
,

and M is defined as in Step 2. For any f ∈ BL1(1), write∣∣∣∣ EX∼F̂ND,V,D
[f(∥MND,P0

X∥F)] − EX∼F̂ND,V,D
[f(∥M̂ND,P0

X∥F)]
∣∣∣∣

as ∣∣∣∣ EX∼F̂ND,V,D

[
f(∥MND,P0

X∥F) − f(∥M̂ND,P0
X∥F)

] ∣∣∣∣ ,
which is bounded above by

EX∼F̂ND,V,D

[ ∣∣∣∣(f(∥MND,P0
X∥F) − f(∥M̂ND,P0

X∥F)
)∣∣∣∣ 1{∣∣∣∥MND,P0

X∥F − ∥M̂ND,P0
X∥F

∣∣∣ > ϵ

} ]
,

(60)
plus

EX∼F̂ND,V,D

[ ∣∣∣∣(f(∥MND,P0
X∥F) − f(∥M̂ND,P0

X∥F)
)∣∣∣∣ 1{∣∣∣∥MND,P0

X∥F − ∥M̂ND,P0
X∥F

∣∣∣ ⩽ ϵ

} ]
,

(61)
for any ϵ > 0. Note that in the expectations above M̂ is non-random, since we are conditioning on
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P̂0. The term (60) is bounded above by

2 · EX∼F̂ND,V,D

[
1

{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ > ϵ

}]
.

Since f ∈ BL1(s), the term (61) is bounded above by

EX∼F̂ND,V,D

[∣∣∣∣∥∥∥MND,P0
X
∥∥∥
F
−
∥∥∥M̂ND,P0

X
∥∥∥
F

∣∣∣∣ · 1{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ ⩽ ϵ

}]
.

Consequently, the term (61) is bounded above by ϵ.
To finish the proof, note that since CP̂0

converges to CP0
in P0 ≡ A0W0 probability, then∥∥∥M̂ND,P0

−MND,P0

∥∥∥
F
→ 0

in P0 ≡ A0W0 probability. Assumption 2-B then implies

EX∼F̂ND,V,D

[
1

{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ > ϵ

}]
→ 0

in P0 ≡ A0W0-probability.
From Steps 1,2, and 3 we conclude that since

β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
⩽ β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
+ β1

(
G̃ND,V ,D , ĜND,V ,D

)
,

Then

β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
→ 0.
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