
B Online Appendix

B.1 Proof of Remark 4

Claim: Let ∥ ·∥ be an arbitrary matrix norm. For any column-stochastic matrix P of nonnegative rank
K we have

CK(P) ≡ CK ∩
{
C ∈ RV×V | CProw = Prow

}
̸= ∅

if and only if
min
C∈CK

∥CProw − Prow∥ = 0.

Proof. We first show the “ =⇒ ” direction. Since CK(P) ̸= ∅, then there exists C∗ ∈ CK such that
C∗Prow = Prow. Since,

0 ⩽ inf
C∈CK

∥CProw − Prow∥ ⩽ ∥C∗Prow − Prow∥ = 0,

then
inf

C∈CK

∥CProw − Prow∥ = ∥C∗Prow − Prow∥ = 0.

Thus, the infimum is attained and

min
C∈CK

∥CProw − Prow∥ = 0.

For the “ ⇐= ” we note that if
min
C∈CK

∥CProw − Prow∥ = 0,

then, by definition, there exists C∗ ∈ CK such that

∥C∗Prow − Prow∥ = 0.

But since ∥ · ∥ is a norm, this implies C∗Prow − Prow = 0.

B.2 Proof of Remark 5

Let P,Q be column-stochastic matrices of dimension V × D. Define the total-variation distance
between P and Q as

∥P −Q∥TV =
1

2

V∑
v=1

D∑
d=1

|pv,d − qv,d|.

This extends the typical definition of the total-variation distance for discrete distributions; see p. 48,
Proposition 4.2 in Levin & Peres (2017).
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Claim: Suppose that P is a column-stochastic matrix of nonnegative rank K ⩽ min{V ,D} that a) does
not admit an anchor-word factorization in the sense of Definition 2, and b) there exists some ϵ > 0

pv ≡
D∑

d=1

pv,d > ϵ, ∀ v = 1, . . . ,V .

Then, there is no sequence of matrices {Pi}i∈N for which Pi = AiWi, (Ai,Wi) ∈ Θ0 and ∥P −

Pi∥TV → 0.

Proof. We establish this result by contradiction. Suppose there is a sequence {Pi}i∈N for which Pi =

AiWi, (Ai,Wi) ∈ Θ0 and ∥P − Pi∥TV → 0. Theorem 1 shows that for each i ∈ N, there exists a
matrix Ci ∈ CK such that

CiP
row
i = Prow

i .

Let ∥ · ∥ denote the Frobenius norm. For any Ci satisfyng CPi = Pi we have

∥CiP
row − Prow∥ = ∥CiP

row − CiP
row
i + CiP

row
i − Prow

i + Prow
i − Prow∥,

⩽ ∥Ci(P
row − Prow

i )∥+ ∥CiP
row
i − Prow

i ∥+ ∥Prow
i − Prow∥,

= ∥Ci(P
row − Prow

i )∥+ ∥Prow
i − Prow∥,

⩽
(
∥Ci∥+ 1

)
· ∥Prow

i − Prow∥.

Consequently,
inf

C∈CK

∥CProw − Prow∥ ⩽
(
∥Ci∥+ 1

)
· ∥Prow

i − Prow∥ (62)

for every i ∈ N. Because CK is bounded (as the matrices C ∈ CK have elements in [0, 1]), then the
sequence {∥Ci∥}i∈N is bounded. Moreover,

∥Prow − Prow
i ∥ =

√√√√ D∑
d=1

V∑
v=1

(prow
v,d − prow

i,(v,d))
2

⩽
D∑

d=1

V∑
v=1

|prow
v,d − prow

i,(v,d))|

=

D∑
d=1

V∑
v=1

∣∣∣pv,d

pv

−
pi,(v,d)

piv

∣∣∣,
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where pv and piv represent the row sums of P and Pi, respectively. Since∣∣∣pv,d

pv

−
pi,(v,d)

piv

∣∣∣ =
∣∣∣pv,d

pv

−
pi,(v,d)

pv

+
pi,(v,d)

pv

−
pi,(v,d)

piv

∣∣∣,
then

∥Prow − Prow
i ∥ ⩽

D∑
d=1

V∑
v=1

1

pv

· |pv,d − pi,(v,d)|

+

D∑
d=1

V∑
v=1

pi,(v,d)

pv · piv

· |piv − pv|.

Since ∥Pi − P∥TV → 0 implies that |pi,(v,d) − pv,d| → 0 for all v = 1, . . . ,V and d = 1, . . . ,D then

∥Prow − Prow
i ∥ → 0,

and, because of (62)
inf

C∈CK

∥CProw − Prow∥ = 0.

This implies, by Theorem 1 that P admits an anchor-word factorization. A contradition.

B.3 Proof that infC∈CK
∥CP̂row − P̂row∥ is always attained.

Claim: Let ∥ · ∥ denote the Frobenius norm. For any column-stochastic, row normalized matrix Prow,

inf
C∈CK

∥CProw − Prow∥ = min
C∈CK

∥CProw − Prow∥.

Proof. We want to show the minimum of ||CProw − Prow|| is attainable in CK when the norm is Frobe-
nius. By the extreme value theorem—e.g., Munkres (2000) Theorem 27.4 on page 174—it is sufficient
to show function fP(C) ≡ ∥CProw −Prow∥ is continuous in C over CK and that CK is compact. For the
rest of the proof, we work with the topology induced by the Euclidean metric in RV2

, and the topology
over RV×V induced by the Frobenius norm.

First, we show that fP(C) is continuous. For any ε > 0, there exists δ = ε/||Prow|| such that if
||C− C0|| < δ, then

| ∥CProw − Prow∥− ∥C0P
row − Prow∥ |⩽ ∥CProw − C0P

row∥ ⩽ ∥C− C0∥ · ∥Prow∥ < ε.

The first inequality holds due to the reverse triangle inequality and the second inequality comes from
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the submultiplicativity of the Frobenius norm; see Horn & Johnson (2012) page 340.
Second, we show that the set CK is compact. It is sufficient to show CK is closed since it is a subset

of a compact space [0, 1]K×K; see Munkres (2000) Theorem 26.2 on page 165. For the compactness
of the space [0, 1]K×K, we rely on facts that the space [0, 1]K

2
is compact and the image of a compact

space under a continuous map is compact—see, for example, Munkres (2000) Theorem 26.5 on page
166—where we depend on the continuous bijection hij(C̃) = C̃V(i−1)+j for any C̃ ∈ [0, 1]K

2
.

For a sequence {Cn ∈ CK}n∈N that converges, we want to show its limit C is in CK. Notice the
matrix converges in the Frobenius norm is equivalent to entry-wise convergences in absolute values.
That is, if limn→∞Cn = C, for any ε > 0, there exists N such that if n > N, |Cn,ij − Ci,j| ⩽

||Cn − C|| ⩽ ε. Also, if limn→∞Cn,ij = Cij for all i and j, for any ε/V > 0, there exists {Nij} such
that if n > sup{Nij}, ||Cn − C|| ⩽

√
V2( ε

V
)2 = ε. The last inequality is from the definition of the

Frobenius norm.
Finally, by the definition of the convergence, the diagonal elements are bounded by 0 and 1,

and the off-diagonal elements also share the same bounds because if Cn,ij ⩽ Cjj, limCn,ij ⩽ Cjj.
Therefore, C is in CK and CK is closed.

B.4 An anchor word factorization always exists when K = 2 ⩽ min{V ,D}

B.4.1 Proof using condition (19) of Theorem 1

Let P be a nonnegative column-stochastic matrix of rank K = 2 ⩽ min{V ,D}. Thomas (1974) has
shown that every rank two nonnegative matrix admits a nonnegative matrix factorization. Let (A,W)

be the nonnegative matrices in R2×V × R2×D that factorize P; that is P = AW.
Without loss of generality we can assume that A and W are column stochastic (that is, their

columns add up to one). Also, suppose that the first term in the vocabulary solves the problem
c1 ≡ minv∈V av2/av1. That is, we assume that the first term of the vocabulary receives the lowest
possible probability under topic two, relative to the probability that the same term receives under topic
one. Analogously, suppose that the second term in the vocabulary solves c2 ≡ minv∈V av1/av2. Note
that if A were not organized in such a way, we could always permute the rows of A to achieve this
structure. Note also that the ratios involving av1 and av2 are always well defined because none of the
rows of P equal zero.

We will make use of the 2× 2 matrix

T ≡

(
1

1−c2
− c1

1−c1

−c2

1−c2

1
1−c1

)
,

where c1 and c2 are defined in the previous paragraph. Because A has rank two, both c1, c2 ∈ (0, 1).
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This implies that T is well defined; that its determinant is strictly positive, and that T−1 is a column-
stochastic matrix.

In a slight abuse of notation, write A as the following block matrix

A =


A∗︸︷︷︸
2×2

Ã︸︷︷︸
V−2×2

 .

Consider then the V × V matrix given by

C ≡

[
I2 02×V−2

(RÃW)−1ÃTRT−1W 0V−2×V−2

]
. (63)

We will show that this matrix satisfies the necessary and sufficient condition for anchor word factor-
ization in Theorem 1.

We first show that C is an element of the set C2 defined in Equation (17). Note first that Tr(C) = 2

and that the diagonal elements of the matrix C are either 0 or 1. Thus, we only need to show that the
elements of the matrix

(RÃW)−1ÃTRT−1W (64)

are nonnegative and bounded above by one.
We first show that the elements of (64) are nonnegative. Note that ÃW (which corresponds to the

lower V − 2×D block of P) is a nonnegative matrix, which implies RÃW is nonnegative. Note also
that because T−1 is column stochastic, then T−1W is a column-stochastic matrix. Finally, since Ã is
column stochastic and c1, c2 ∈ (0, 1), it follows that ÃT is nonnegative.

We then show that the elements of (64) are bounded above by one. Since, by definition, RM is the
diagonal matrix that contains the row sums of a matrix M, algebra shows that

RÃW = R(ÃT)(T−1W) = RÃTRT−1W
.

Thus, the elements of the V − 2 × 2 matrix (64) are bounded above by one. This shows that C is an
element of the set C2.

Finally, we show that C satisfies the equation CProw = Prow. Using the block matrix representation
of A

Prow =

(A∗W)row(
ÃW

)row

 .
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The definition of C in Equation (63) implies

CProw =

(
(A∗W)row

(RÃW)−1ÃTRT−1W (A∗W)row

)
,

=

 (A∗W)row

(RÃW)−1ÃTRT−1W

(
(A∗T)

(
T−1W

))row

 .

By construction, A∗T is a diagonal matrix, which implies(
(A∗T)

(
T−1W

))row
=
((

T−1W
))row

= RT−1WT−1W.

Thus, we conclude that CProw = Prow, and thus C ∈ C2(P). Theorem 1 thus implies that any matrix P

of rank K = 2 admits an anchor word factorization.

B.4.2 Explicit anchor word factorization when K = 2 ⩽ min{V ,D}

The proof of Theorem 1 gives a simple formula to obtain the anchor word factorization of P from
C ∈ C2(P). In particular, if we start out with the factors (A,W) that were used in the previous
subsection, the proof of Theorem 1 implies that the column-normalized version of the V × K matrix[

IK
ÃTRT−1WR−1

A∗W

]
(65)

provides an anchor word factorization of P. Since A∗T is diagonal and column stochastic, then the
matrix in (65) equals [

A∗T

ÃT

]
(A∗T)

−1 ,

where we have used
RA∗W = RA∗TT−1W = A∗TRT−1W .

Thus,

A0 =

[
A∗T

ÃT

]
and W0 ≡ T−1W provide an anchor word factorization of P.
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B.5 Anchor word factorization does not always exists V = 4, K = D = 3

B.5.1 Example

In this section we show that any matrix P of the form

P =


α 0 0

0 γ 0

0 1− γ 1− β

1− α 0 β

 ,

for α,β,γ ∈ (0, 1) does not admit an anchor word factorization.
The row-normalized version of P is given by:

Prow =


1 0 0

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β

0 β
1−α+β

 ,

We define the set C̃K to be the set of V × V matrices of the form[
IK 0K×V−K

M 0V−K×K

]
,

where M ⩾ 0 is a row-normalized matrix (with rows different from zero, so that row-normalization
is always well defined). From Lemma 1, we want to show there does not exist C ∈ C̃K and a row
permutation matrix Π such that CΠProw = ΠProw.

Since K = 3 we can argue that it is only relevant to focus on four classes of permutations (which
are indexed by the row of Prow that is placed at the bottom of the permuted matrix). Without loss of
generality, we can focus on

Prow
1 =


1−α

1−α+β
0 β

1−α+β

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1 0 0

 ,
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Prow
2 =


1 0 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β

0 β
1−α+β

0 1 0

 ,

Prow
3 =


1 0 0

0 1 0
1−α

1−α+β
0 β

1−α+β

0 1−γ
2−γ−β

1−β
2−γ−β

 ,

Prow
4 =


1 0 0

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β

0 β
1−α+β

 .

Note there is no C ∈ C̃K such that CProw
i = Prow

i for i = 1, 2, since this would require some
elements of M to be strictly above one.

Consider now the matrices Prow
3 and Prow

4 . We can focus on Prow
3 , since the argument for the

other matrix is entirely analogous. Let the elements of M, which is a 1 × 3 matrix, be denoted as
[m1,m2,m3]. In order for the first element of the last row of Prow

3 (which equals zero) to be a convex
combination of the first three rows it is necessary to have m1 = m3 = 0. However, this implies
that the last element of the fourth row of Prow

3 (which equals 1 − β/2 − γ − β) cannot be obtained
as a convex combination of the first three rows, whenever β ∈ (0, 1). Therefore there does not exist
C ∈ C̃K such that CProw

3 = Prow
3 . Since the argument for Prow

4 is analogous, we conclude that the
anchor word factorization does not exist for P.

B.6 Upper bound for q∗
1−α(V ,K,D,ND)

Lemma 4. Let ∥ · ∥ denote the Frobenius norm. For any α ∈ (0, 1)

q∗
1−α(V ,D,K,ND) ⩽ sup

C∈CK

∥C− IV∥ · q̃∗
1−α(V ,D,K,ND), (66)

where

q̃∗
1−α(V ,D,K,ND) = sup

(A,W)∈Θ0

q̃1−α(AW,V ,D,K,ND)
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and

q̃1−α(AW,V ,D,K,ND) = inf

{
q ∈ R+

∣∣∣ PAW

(
∥P̂row − (AW)row∥ ⩽ q

)
⩾ 1− α.

}
.

Proof. By definition—see Section 3.2— q1−α(AW,V ,D,K,ND) is the 1 − α quantile of the test
statistic T(Y) under the distribution P = AW, (A,W) ∈ Θ0. Thus:

q1−α(AW,V ,D,K,ND) = inf

{
q ∈ R+

∣∣∣ PAW

(
T(Y) < q

)
⩾ 1− α

}
Let CP ∈ CK be the matrix for which CProw − (AW)row = 0 (such a matrix exists by Theorem 1).
Since the test statistic T(Y) equals minC∈CK

∥CP̂row − P̂row∥, it follows that

T(Y) ⩽ ∥CPP̂
row − P̂row∥

= ∥CPP̂
row − CPP

row + CPP
row − Prow + Prow − P̂row∥

= ∥ (CP − IV) (P̂row − Prow)∥

⩽ sup
C∈CK

∥C− IV∥ · ∥P̂row − Prow∥,

where the last inequality follows from the submultiplicativity of Frobenius norm. This inequality
implies that

Q1 ≡

q ∈ R+

∣∣∣∣∣ PAW

(
sup
C∈CK

∥C− IV∥ · ∥P̂row − Prow∥ ⩽ q

)
⩾ 1− α


is a subset of

Q0 ≡
{
q ∈ R+

∣∣∣ PAW

(
T(Y) < q

)
⩾ 1− α

}
.

Therefore,
q1−α(AW,V ,D,K,ND) = infQ0 ⩽ infQ1. (67)

Define C∗(V ,K) ≡ supC∈CK
∥C− IV∥. We want to show that

infQ1 ⩽ C∗(V ,K) · q̃1−α(AW,V ,D,K,ND).

Let
Q2 ≡

{
q ∈ R+

∣∣∣ PAW

(
∥P̂row − Prow∥ ⩽ q

)
⩾ 1− α.

}
,
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and note that, by definition,

q̃1−α(AW,V ,D,K,ND) = infQ2.

By definition of infimum, there exists a sequence {qn}n∈N ⊆ Q2 such that

lim
n→∞qn = q̃1−α(AW,V ,D,K,ND). (68)

For each qn we have that (
C∗(V ,K) · qn

)
∈ Q1.

Consequently,
infQ1 ⩽ C∗(V ,K) · qn

for all n ∈ N. We thus conclude by (68) that

infQ1 ⩽ C∗(V ,K) · q̃1−α(AW,V ,D,K,ND)

and by (67) that

q1−α(AW,V ,D,K,ND) ⩽ C∗(V ,K) · q̃1−α(AW,V ,D,K,ND).

Taking the supremum on both sides over (A,W) ∈ Θ0 gives the desired result.

B.7 Estimation error of different estimators

In this section we discuss two alternative estimators for Prow. Here is a description of the estimators
and the results we derive:

1. Nuclear-Norm Minimizer: Let P̂nuc be the estimator suggested by McRae & Davenport (2021),
Section 2.3, Theorem 2.2, p. 712. The following proposition follows from their Theorem 2.2:

Proposition 3. Let 0 < γ < 1 be an arbitrary scalar. For any (A,W) such that pv(A,W)/D ⩾

γ/V

∥P̂row
nuc − (AW)row∥F ⩽ 4

√
16

γ2
·
V3/2 · ln

(
(D+ V)/ϵ

)
· K

Nmin
(69)

with probability at least 1− ϵ.

2. Minimax Estimator for the columns: Let P̂min the V × D matrix with (v,d)-entry given by
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(
√
Nd/V + nvd)/(

√
Nd + Nd). Let P̂row

min the row-normalized version of this estimator. In
Section B.7.2 below we establish the following proposition:

Proposition 4. Let 0 < γ < 1 be arbitrary scalars. For any (A,W) such that pv(A,W)/D ⩾

γ/V

∥P̂row
min − (AW)row∥F ⩽

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin + 2N
1/2
min + 1

(70)

with probability at least 1− ϵ.

The estimator that row-normalizes that minimax estimator is expected to satisfy the high-level
assumption in (26) provided

V2

Nmin + 2N
1/2
min + 1

is small. Here, we rely on the same technique as Proposition 3 to derive the rate. We can also
provide better rates with an order of

V2

D · (Nmin + 2N
1/2
min + 1)

with other assumptions about probability design and other techniques.

Outline for this section: Let P̂ be an arbitrary estimator of the population term-document fre-
quency matrix, P. Just as we did in the main body of the paper, define P̂row ≡ R−1

P̂
P̂ and Prow ≡ R−1

P P.
We establish a series of results that will allow us to provide finite-sample bounds for ||P̂row − Prow||F.

Lemma 5 below shows that in order to upper-bound the estimation error ||P̂row − Prow||F we can
analyze the terms

||R−1
P (P − P̂)||F (71)

and
||(R−1

P̂
− R−1

P )P̂||F. (72)

Lemma 6 uses Markov’s inequality to provide an upper bound for the term in (71). Lemma 7 provides
an upper bound for the term in (72). The bounds do not depend on the specific form of P̂ as long as
the second moments of the estimator exist.

Lemma 5. If ||R−1
P (P− P̂)||F ⩽ δ1 with probability at least 1−ϵ/2, and ||(R−1

P̂
−R−1

P )P̂||F ⩽ δ2 with
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probability at least 1− ϵ/2, then with probability at least 1− ϵ,

||P̂row − Prow||F ⩽ 2max{δ1, δ2}

Proof. Algebra shows that

||P̂δrow − Prow||F = ||R−1

P̂
P̂ − R−1

P P||F

= ||R−1

P̂
P̂ − R−1

P P̂ + R−1
P P̂ − R−1

P P||F

⩽ ||R−1

P̂
P̂ − R−1

P P̂||F + ||R−1
P P̂ − R−1

P P||F

= ||R−1
P (P̂ − P)||F + ||(R−1

P̂
− R−1

P )P̂||F,

where the inequality comes from the triangle inequality.
The inequality above implies that for any constant c we have

P(||P̂row − Prow||F > c) ⩽P(||R−1
P (P̂ − P)||F + ||(R−1

P̂
− R−1

P )P̂||F > c).

Moreover, the right-hand side of the equation above is upper-bounded by

P(||R−1
P (P̂ − P)||F > c/2 or ||(R−1

P̂
− R−1

P )P̂||F > c/2).

The subadditivity of probability measures then implies

P(||P̂row − Prow||F > c) ⩽P(||R−1
P (P̂ − P)||F > c/2)

+ P(||(R−1

P̂
− R−1

P )P̂||F > c/2).

Take c = 2max{δ1, δ2} and note that

P(||R−1
P (P̂ − P)||F > max{δ1, δ2}) ⩽ P(||R−1

P (P̂ − P)||F > δ1) < ϵ/2,

and analogously P((R−1

P̂
− R−1

P )P̂ > max{δ1, δ2}) < ϵ/2.

Lemma 6. Suppose that the second moments of p̂vd exist for v = 1, ...,V and d = 1, ...,D. Then

with probability at least 1− ϵ

||R−1
P (P̂ − P)||F ⩽

1

pvmin

√∑V
v=1

∑D
d=1 E

[
(p̂vd − pvd)2

]
ϵ

,

where the expectation E is taken under the true data generating process P.
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Proof. The definition of Frobenius norm implies that for any x > 0

P(||R−1
P (P̂ − P)||F > x) = P

∑
v

∑
d

1

p2
v

(pvd − p̂vd)
2 > x2


⩽ P

 1

p2
vmin

∑
v

∑
d

(pvd − p̂vd)
2 > x2


⩽

∑
v

∑
d E(pvd − p̂vd)

2

p2
vminx

2
,

where the last step follows from Markov’s inequality. Taking x to be√∑V
v=1

∑D
d=1 E

[
(p̂vd − pvd)2

]
p2
vminϵ

completes the proof.

Lemma 7. Suppose that the second moments of p̂vd exist for v = 1, ...,V and d = 1, ...,D. Then

with probability at least 1− ϵ

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√∑V
v=1 E

[
(pv − p̂v)2

]
ϵ

where the expectation E is taken under the true data generating process P, and pv ≡
∑d

d=1 pvd,

p̂v ≡
∑d

d=1 p̂vd.

Proof.

||(R−1

P̂
− R−1

P )P̂||F =

∑
v

∑
d

(
1

pv

−
1

p̂v

)2p̂2
vd

1/2

=

∑
v

∑
d

(p̂v − pv)
2

p2
vp̂

2
v

p̂2
vd

1/2

=

∑
v

(p̂v − pv)
2

p2
vp̂

2
v

∑
d

p̂2
vd

1/2

⩽

∑
v

(p̂v − pv)
2

p2
vp̂

2
v

p̂2
v

1/2

13



⩽

 1

p2
vmin

∑
v

(p̂v − pv)
2

1/2

.

The inequality above holds since (
∑

d p̂
2
vd)

1/2 ⩽
∑

d p̂vd = p̂v.
Then, for any x > 0

P(||(R−1

P̂
− R−1

P )P̂||F > x) ⩽ P

 1

p2
vmin

∑
v

(p̂v − pv)
2 > x2


⩽

∑
v E((p̂v − pv)

2)

p2
vminx

2
,

where the last line follows by Markov’s inequality. Taking

x =
1

pvmin

√∑
v E(pv − p̂v)2

ϵ
,

yields the desired result.

B.7.1 Estimation error of Prow
freq

Proof of Proposition 2. In a slight abuse of notation, let P̂ denote the V ×D matrix with (v,d)-entry
given by nvd/Nd. Let P̂row the row-normalized version of this estimator.

Note that ∑
v

∑
d

E
[
(p̂vd − pvd)

]2
=

∑
v

∑
d

pvd(1− pvd)

Nd

⩽
∑
v

∑
d

pvd(1− pvd)

Nmin

=
∑
d

1−
∑

v p
2
vd

Nmin

⩽
D(1− 1

V
)

Nmin
.

The first equality holds because nvd is a binomial distribution with parameter Nd and pvd. The
second equality holds since the

∑
v pvd = 1. The second inequality comes from the fact that

min
p1d,...,pVd

∑
v

p2
vd s.t.

∑
v

pvd = 1
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equals 1/V . Therefore, by Lemma 6 with probability at least 1− ϵ/2

||R−1
P (P − P̂)||F ⩽

1

pvmin

√
2D(1− 1

V
)

Nminϵ
.

Moreover, since by assumption, pvmin/D ⩾ γ/V , we have that

||R−1
P (P − P̂)||F ⩽

√
2V2(1− 1

V
)

γ2DNminϵ
.

Lemma 7 implies that with probability at least 1− ϵ/2

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√
2
∑

v E(pv − p̂v)2

ϵ

=
1

pvmin

√
2
∑

v

∑
d E
[
(p̂vd − pvd)

]2
ϵ

=
1

pvmin

√
2D(1− 1

V
)

Nminϵ

⩽

√
2V2(1− 1

V
)

γ2DNminϵ
,

where the second equality holds because the estimators p̂vd are unbiased and they are also indepen-
dent across documents.

Finally, Lemma 5, implies that if P̂row is based on the row-normalization of the empirical frequen-
cies then

∥P̂row − (AW)row∥F ⩽

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin ·D

with probability at least 1− ϵ.

B.7.2 Estimation error of Prow
min

Proof of Proposition 4. In a slight abuse of notation, let P̂ denote the V ×D matrix with (v,d)-entry
given by (

√
Nd/V + nvd)/(

√
Nd +Nd). Let P̂row be the row-normalized version of this estimator.

As above, we show that

∑
v

∑
d

E
[
(p̂vd − pvd)

]2
=

∑
v

∑
d

Ndpvd − 2Ndpvd

V
+ Nd

V2

(
√
Nd +Nd)2

15



⩽
∑
v

∑
d

pvd − 2pvd

V
+ 1

V2

Nmin + 2N
1/2
min + 1

=
∑
d

∑
v

pvd − 2pvd

V
+ 1

V2

Nmin + 2N
1/2
min + 1

=
D(1− 1

V
)

Nmin + 2N
1/2
min + 1

The first equality holds because nvd is a binomial distribution with parameter Nd and pvd. The third
equality holds since the

∑
v pvd = 1.

Therefore, by Lemma 6 with probability at least 1− ϵ/2

||R−1
P (P − P̂)||F ⩽

1

pvmin

√
2D(1− 1

V
)

(Nmin + 2N
1/2
min + 1)ϵ

.

Moreover, since by assumption, pvmin/D ⩾ γ/V , we have that

||R−1
P (P − P̂)||F ⩽

√
2V2(1− 1

V
)

γ2D(Nmin + 2N
1/2
min + 1)ϵ

.

Note that

∑
v

E

∑
d

(p̂vd − pvd)
2

 =
∑
v

∑
d

E(p̂vd − pvd)
2 +

∑
v

∑
d̸=d ′

E(p̂vd − pvd)E(p̂vd ′ − pvd ′).

We use the bound for the first term again and for the second term, we know

E(p̂vd − pvd) =
1
V
− pvd√
Nd + 1

.

So∑
v

∑
d̸=d ′

E(p̂vd − pvd)E(p̂vd ′ − pvd ′) =
∑
v

∑
d̸=d ′

1

(
√
Nd + 1)2

(
1− V(pvd + pvd ′)

V2
+ pvdpvd ′

)
=

∑
d̸=d ′

1

(
√
Nd + 1)2

∑
v

(
1− V(pvd + pvd ′)

V2
+ pvdpvd ′

)

=
∑
d̸=d ′

1

(
√
Nd + 1)2

∑
v

pvdpvd ′ −
1

V
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⩽
∑
d̸=d ′

1

(
√
Nd + 1)2

(
1−

1

V

)

⩽
D2
(
1− 1

V

)
Nmin + 2N

1/2
min + 1

The third equality holds since the
∑

v pvd = 1. The first inequality comes from the fact that

max
∑
v

pvdpvd ′ s.t.
∑
v

pvj = 1 and pvj ⩾ 0 for j = d or d ′

equals to 1 by Kuhn-Tucker conditions. Therefore,

∑
v

E

∑
d

(p̂vd − pvd)
2

 ⩽
D(D+ 1)

(
1− 1

V

)
Nmin + 2N

1/2
min + 1

.

Lemma 7 implies that with probability at least 1− ϵ/2

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√
2
∑

v E(pv − p̂v)2

ϵ

⩽
1

pvmin

√√√√
2
D(D+ 1)

(
1− 1

V

)
Nmin + 2N

1/2
min + 1

⩽

√√√√ 2(D+ 1)V2(1− 1
V
)

γ2D
(
Nmin + 2N

1/2
min + 1

)
ϵ
,

Finally, Lemma 5, implies that if P̂row is based on the row-normalization of the minimax estimator
then

∥P̂row − (AW)row∥F ⩽

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin + 2N
1/2
min + 1

with probability at least 1− ϵ.

B.8 Topic estimation of FOMC1 corpus using Arora, Ge, Kannan & Moitra
(2012), Ke & Wang (2022) and LDA
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Figure 12: Arora, Ge & Moitra (2012)’s estimator of A in the FOMC1 corpus. Each panel shows the word
cloud of words of a topic (column in A matrix), where the font size is proportional to term’s weight in the
topic, and the top 5 terms with largetst weights are colored. The estimated anchor words for each topic is in the
caption.
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Figure 13: Ke & Wang (2022)’s estimator of A in the FOMC1 corpus. Each panel shows the word cloud of
words of a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the
top 5 terms with largetst weights are colored. The estimated anchor words for each topic is in the caption.
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Figure 14: Latent Dirichlet Allocation estimator of A in the FOMC1 corpus with uniform priors. Each panel
shows the word cloud of words of a topic (column in A matrix), where the font size is proportional to term’s
weight in the topic, and the top 5 terms with largetst weights are colored. The estimated anchor words for each
topic is in the caption.
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