B Online Appendix

B.1 Proof of Remark 4

Claim: Let || - || be an arbitrary matrix norm. For any column-stochastic matrix P of nonnegative rank

K we have
Cx(P)=Cx N {C e RV*V | CP™Y = me} # 0

if and only if

min [|CP™ — Pov|| = 0.
Celyg

Proof. We first show the “ = ” direction. Since Cy(P) # (), then there exists C* € Cx such that

C*Prow = P™¥_ Since,
O < lnf ||CPI'0W . PrOWH < ||C*PFOW . PrOWH — 0’
Cely
then
inf ||CPr0w o Prow” — |IC*Prow o ProwH =0.
Celyg

Thus, the infimum is attained and

min ||[CP™Y — P™¥|| = 0.
CelCyx

For the “ <— " we note that if

min [|[CP™Y — P™¥|| =0,
CeCx

then, by definition, there exists C* € Cx such that
||C*PFOW o PI'OWH — 0'

But since || - || is a norm, this implies C*P™" — P = 0. O

B.2 Proof of Remark 5

Let P, Q be column-stochastic matrices of dimension V x D. Define the total-variation distance
between P and Q as
TR
[P —Qllrv = 2 Z Z [Pv.a — qv,al-
v=1 d=1
This extends the typical definition of the total-variation distance for discrete distributions; see p. 48,
Proposition 4.2 in|Levin & Peres| (2017).



Claim: Suppose that P is a column-stochastic matrix of nonnegative rank K < min{V, D} that a) does

not admit an anchor-word factorization in the sense of Definition[2] and b) there exists some € > 0

D
vava,d>e, Vv=1,...,V.
d=1

Then, there is no sequence of matrices {P;}icy for which P; = A;W;, (A, W;) € © and ||P —
PiHTV — 0.

Proof. We establish this result by contradiction. Suppose there is a sequence {P; }icy for which P; =
AW, (A, W;) € ©g and ||P — Pi|[tv — 0. Theorem [1| shows that for each i € N, there exists a
matrix C; € Ck such that

CiP™ = PV,

Let || - || denote the Frobenius norm. For any C; satisfyng CP; = P; we have

HCIPI‘OW _ PI'OWH HCIPI'OW _ Cin’OW + CiPiOW _ P{OW + PiOW _ PI'OWH’
(P — P+ [P — P | [P — P
ICL (P — PE™) |+ [P — P

< (IGl+1) - P =P

N

Consequently,
inf ||CP™ — P™|| < (||Ci]| + 1) - |[PP — PV (62)
Celx

for every 1 € N. Because Cx is bounded (as the matrices C € Ck have elements in [0, 1]), then the

sequence {||Ci||}ien is bounded. Moreover,

D V
HProw _ P{OWH = Z Z(Piﬁ‘ﬁ - p?,)zvv,d))Q

A\
D pUa—pEh.a)l

N




where p, and p;, represent the row sums of P and P, respectively. Since

Pvid  Pi(v.ad) ‘ — |Pva_ Pitva) + Pilva) _ Pulvd)
Pv Piv Pv Pv Pv Piv ’
then
D V 1
||Pr0w . PEOWH < Z Z —_— |pv,d - pi,(\hd)|
d—1v—1 Pv
D V P
i,(v,d
+ ZZ S oy — Pl
d=1v=1 Py Piv

Since ||P; — P||ry — 0 implies that |p; (y a) — Pv.al = Oforallv=1,...,Vandd =1,...,D then
[P — P 0,

and, because of (62))

inf [|CP™ — PV =0,
Celyg

This implies, by Theorem [I|that P admits an anchor-word factorization. A contradition.

B.3 Proof that infcce, || CPprow — ﬁ""WH is always attained.

Claim: Let || - || denote the Frobenius norm. For any column-stochastic, row normalized matrix P,
inf ||[CP™ — P™¥|| = min ||CP™Y — P™"¥|.
Ceek Ceey

Proof. We want to show the minimum of ||CP™¥ — P™¥|| is attainable in Cx when the norm is Frobe-
nius. By the extreme value theorem—e.g.,Munkres|(2000) Theorem 27.4 on page 174—it is sufficient
to show function fp(C) = ||CP™Y — PrV|
rest of the proof, we work with the topology induced by the Euclidean metric in RVY?, and the topology

is continuous in C over Cx and that Cy is compact. For the

over RY*V induced by the Frobenius norm.
First, we show that fp(C) is continuous. For any ¢ > 0, there exists 6 = ¢/|[P™"|| such that if
[|C — Cyl| < d, then

| HCProw _ Prow|| _ ||C0Pr0w _ ProwH |< ||CPr0w _ COPrOWH < HC _ COH . HProwH <.

The first inequality holds due to the reverse triangle inequality and the second inequality comes from



the submultiplicativity of the Frobenius norm; see Horn & Johnson| (2012) page 340.

Second, we show that the set Cy is compact. It is sufficient to show Cy is closed since it is a subset
of a compact space [0, 1]¥*X; see Munkres (2000) Theorem 26.2 on page 165. For the compactness
of the space [0, 1]X*X, we rely on facts that the space [0, 1]¥” is compact and the image of a compact
space under a continuous map is compact—see, for example, Munkres| (2000) Theorem 26.5 on page
166—where we depend on the continuous bijection h; (C) = évufl)ﬂ for any C € [0, 1]¥’.

For a sequence {C,, € CxJnexn that converges, we want to show its limit C is in Cx. Notice the
matrix converges in the Frobenius norm is equivalent to entry-wise convergences in absolute values.
That is, if limn_,,,Cy = C, for any € > 0, there exists N such that if n > N, |C,, ;5 — Cy] <
ICry — ClI < e. Also, if limy,_,,Cy ij = Cyj for all i and j, for any € /V > 0, there exists {Nj;} such
that if n > sup{Ny}, [[C;, — C|| < \/W%)Q = ¢. The last inequality is from the definition of the
Frobenius norm.

Finally, by the definition of the convergence, the diagonal elements are bounded by 0 and 1,
and the off-diagonal elements also share the same bounds because if C,, ;; < Cjj, limC,, ;5 < Cj5.

Therefore, C is in Cx and Ck is closed.
l

B.4 An anchor word factorization always exists when K = 2 < min{V, D}
B.4.1 Proof using condition (19) of Theorem ]|

Let P be a nonnegative column-stochastic matrix of rank K = 2 < min{V, D}. Thomas| (1974) has
shown that every rank two nonnegative matrix admits a nonnegative matrix factorization. Let (A, W)
be the nonnegative matrices in R?*V x R2%P that factorize P; thatis P = AW.

Without loss of generality we can assume that A and W are column stochastic (that is, their
columns add up to one). Also, suppose that the first term in the vocabulary solves the problem
€1 = minyey ay2/a,1. That is, we assume that the first term of the vocabulary receives the lowest
possible probability under topic two, relative to the probability that the same term receives under topic
one. Analogously, suppose that the second term in the vocabulary solves c; = min,cyv a,1/a,2. Note
that if A were not organized in such a way, we could always permute the rows of A to achieve this
structure. Note also that the ratios involving a,; and a,» are always well defined because none of the
rows of P equal zero.

We will make use of the 2 x 2 matrix

1 _ €
— 1702 1701
T - —C2 1 ’
1—62 1—C1

where c; and ¢, are defined in the previous paragraph. Because A has rank two, both ¢y, cs € (0, 1).
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This implies that T is well defined; that its determinant is strictly positive, and that T~! is a column-
stochastic matrix.

In a slight abuse of notation, write A as the following block matrix

A*
~—
A — 252
A
~~
V—2x2
Consider then the V x V matrix given by
I 0o v
C= 2 v (63)

(fRAW)*lATfRTflw Ov_2xv—2

We will show that this matrix satisfies the necessary and sufficient condition for anchor word factor-
ization in Theorem Il
We first show that C is an element of the set Cy defined in Equation (17). Note first that Tr(C) = 2
and that the diagonal elements of the matrix C are either O or 1. Thus, we only need to show that the
elements of the matrix
(Riw) "ATRr-1w (64)

are nonnegative and bounded above by one.

We first show that the elements of are nonnegative. Note that AW (which corresponds to the
lower V — 2 x D block of P) is a nonnegative matrix, which implies R 5, is nonnegative. Note also
that because T~ ! is column stochastic, then T~!W is a column-stochastic matrix. Finally, since A is
column stochastic and ¢y, ¢y € (0, 1), it follows that AT is nonnegative.

We then show that the elements of are bounded above by one. Since, by definition, R, is the
diagonal matrix that contains the row sums of a matrix M, algebra shows that

jQ/f\w = R(AT)(T*W) = fRAT:RT,lw'

Thus, the elements of the V — 2 x 2 matrix (64) are bounded above by one. This shows that C is an
element of the set C,.

Finally, we show that C satisfies the equation CP™" = P™". Using the block matrix representation

of A
(A*W) row

P = (Aw)™



The definition of C in Equation implies
AW row
CPp™v — » E ) ) .
(A*W)FOW
(Rav) "ATRT-1yy ((A*T) (T—lw))

By construction, A*T is a diagonal matrix, which implies
((A*T) (T*lw))r o ((T*IW))I R TIW.

Thus, we conclude that CP™ = P™¥, and thus C € Cy(P). Theorem [I]thus implies that any matrix P

of rank K = 2 admits an anchor word factorization.

B.4.2 Explicit anchor word factorization when K = 2 < min{V, D}

The proof of Theorem [I] gives a simple formula to obtain the anchor word factorization of P from
C € Cy(P). In particular, if we start out with the factors (A, W) that were used in the previous

subsection, the proof of Theorem [I|implies that the column-normalized version of the V x K matrix

I

. 65
ATRr wRatw (©>)

provides an anchor word factorization of P. Since A*T is diagonal and column stochastic, then the

matrix in (65)) equals

A*T

AT) ™,
AT (ATT)

where we have used

:RA*W - :RA*TT*1W - A*TRTflw.

Thus,
A*T

Ag= |t
" AT

and W, = T'W provide an anchor word factorization of P.



B.5 Anchor word factorization does not always exists V =4, K =D =3
B.5.1 Example

In this section we show that any matrix P of the form

x 0 0

0 8% 0

0 11—y 1—-0
l—a 0 3

Y

for o, 3,y € (0, 1) does not admit an anchor word factorization.

The row-normalized version of P is given by:

1 0 0
0 1 0
row
P = 0 1—y 1-B )
2—=y—B 2—v—B
1—x O B
1—x+p 1—x+p

We define the set éK to be the set of V x V matrices of the form

[HK OKXVK]
M Ov_kxx|
where M > 0 is a row-normalized matrix (with rows different from zero, so that row-normalization
is always well defined). From Lemma [l we want to show there does not exist C € éK and a row
permutation matrix IT such that CTTP™Y = TTP™Y,

Since K = 3 we can argue that it is only relevant to focus on four classes of permutations (which

are indexed by the row of P™" that is placed at the bottom of the permuted matrix). Without loss of

generality, we can focus on

1—x 0 B
11—+ 11—+
ow 0 1 0
P = 0 1—y 1-B ’
2—y—B 2—v-B
1 0 0



1 0 0

0 17‘}/ 17(5

prov — 2—y—B 2—v—P
2 1— 0 B ’

11—+ 11—+

0 1 0

0 0

ow 0 1 0
=l s |

1—x+p 1—a+p

0 17‘}/ 17(5

2—y—B 2—y—B

1 0 0

y 0 1 0

Py = 0 Iy s

2—=y—B 2—v—B

1— 0 B

1—a+p 1—a+p

Note there is no C € g such that CP" = P¥ for i = 1,2, since this would require some
elements of M to be strictly above one.

Consider now the matrices PY™ and P}°Y. We can focus on P%V, since the argument for the
other matrix is entirely analogous. Let the elements of M, which is a 1 x 3 matrix, be denoted as
[my, My, ms]. In order for the first element of the last row of PY" (which equals zero) to be a convex
combination of the first three rows it is necessary to have m; = ms3 = 0. However, this implies
that the last element of the fourth row of PP (which equals 1 — 3/2 —y — [3) cannot be obtained
as a convex combination of the first three rows, whenever 3 € (0, 1). Therefore there does not exist
C € C such that CPYY = P, Since the argument for P is analogous, we conclude that the

anchor word factorization does not exist for P.

B.6 Upper bound for q; _(V,K, D, Np)

Lemma 4. Let || - || denote the Frobenius norm. For any « € (0, 1)
qif(x(v7 D7 K7ND) < sup ”C - HVH : qffo((va D7 K7ND)7 (66)
CGGK
where

qalkfoc(quaK7ND) = sup qlfo((Awa V7D7K7ND)
(A W)EBq



and

d1_o(AW,V,D,K,Np) = inf {q R, ‘ Paw (Hﬁmw —(AW)™|| < q) >1- oc.} .

Proof. By definition—see Section qi-«(AW,V,D,K,Np) is the 1 — & quantile of the test
statistic T(Y) under the distribution P = AW, (A, W) € ©,. Thus:

qi-«(AW,V,D,K,Np) = inf {q eR, ‘IPAW (T(Y)<q)>1-— oc}

Let Cp € Cx be the matrix for which CP™" — (AW)™" = 0 (such a matrix exists by Theorem .
Since the test statistic T(Y) equals mincee, || CProv — prow ||, it follows that

T(Y) < ||CpP™ — P
= ||CP/]5rOW - CPPrOW + CPProw _ prow | prow _ /ISI‘OWH
= || (Cp —Ty) (P — P)|

< sup ||C=Ty| - [P — P,
Ceey

where the last inequality follows from the submultiplicativity of Frobenius norm. This inequality
implies that

Qi=qqeR,

Paw (sup |IC =Ty - [P — Po¥|| < q> >1—«
Celyg
is a subset of

QOE{q€R+‘PAW(T(Y)<q)>1—a}.

Therefore,
qi—«(AW,V,D,K,Np) = inf Q, < inf Q. (67)

Define C*(V,K) = supcce, ||C —Iv||. We want to show that
inf Ql < C*(V7 K) ' qlfoc(Awa v7 D7 K,ND).

Let
Q.= {q eR. | Paw (IP™ —P™| <q) > 1- oc.},



and note that, by definition,
di—« (AW, V,D,K,Np) = inf Q,.
By definition of infimum, there exists a sequence {n lnen € Qo such that
lim qn = q1-«(AW, V. D, K, Np). (68)

For each ¢,, we have that

(C*(V,K) - gqn) € Q1.

Consequently,
inf Q; < C*(V,K) - qn

for all n € N. We thus conclude by that
inf Ql g C* (V, K) : ql—oc(Awa V7 D7 K7ND)

and by (67) that
ql—(x(AW> V, Dv K7ND) < C*(Va K) . (Nh—oc(AWa V, D7K7ND)-

Taking the supremum on both sides over (A, W) € ©, gives the desired result.

B.7 Estimation error of different estimators

In this section we discuss two alternative estimators for P™%. Here is a description of the estimators

and the results we derive:

1. Nuclear-Norm Minimizer: Let /ﬁnuc be the estimator suggested by McRae & Davenport (2021)),
Section 2.3, Theorem 2.2, p. 712. The following proposition follows from their Theorem 2.2:

Proposition 3. Let 0 < v < 1 be an arbitrary scalar. For any (A, W) such that p,,(A,W)/D >
Y/V

16 V¥2-In((D+V)/e)-K
Yz Nmin

H/F;row . (AW)V()WHF <4

nuc

(69)
with probability at least 1 — €.

2. Minimax Estimator for the columns: Let /]Smin the V x D matrix with (v, d)-entry given by
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(vV/Na/V +n,q)/(vVNg + Ng). Let /]Sfm the row-normalized version of this estimator. In
Section below we establish the following proposition:

Proposition 4. Let 0 < 'y < 1 be arbitrary scalars. For any (A, W) such that p,,(A,W)/D >
v/V

) %
Ny + 2NY2 4 70

min

<=

R 8 (1 -
”me - (AW)mWHF < Y2 -

min
with probability at least 1 — €.

The estimator that row-normalizes that minimax estimator is expected to satisfy the high-level
assumption in provided
V2
Nmin + 2Npi2 4+ 1

min

is small. Here, we rely on the same technique as Proposition [3|to derive the rate. We can also

provide better rates with an order of

V2
D - (N 4+ 2NY2 4 1)

min

with other assumptions about probability design and other techniques.

Outline for this section: Let P be an arbitrary estimator of the population term-document fre-
quency matrix, P. Just as we did in the main body of the paper, define prow = IR];llAD and P = R, 'P.
We establish a series of results that will allow us to provide finite-sample bounds for ||[P™" — P™Y||¢.

Lemma |5| below shows that in order to upper-bound the estimation error ||Prov — Prov| | we can

analyze the terms

|Rp (P — P)|I (71)

and
I(R5" — R )Pl (72)

Lemma [6|uses Markov’s inequality to provide an upper bound for the term in (7I)). Lemma/7|provides
an upper bound for the term in (72). The bounds do not depend on the specific form of P as long as

the second moments of the estimator exist.

Lemma 5. If|| R, (P —15)||F < 01 with probability at least 1 — € /2, and H(Rgl —fREl)lSHF < 09 with

11



probability at least 1 — € /2, then with probability at least 1 — e,
[P — Pl < 2max{5;, 5.}
Proof. Algebra shows that

”]SZSrow o ProwHF _ H:Rglls o :R;lpHF
=|R;'P — Rp'P + Rp'P — Ry Py
<RSP —Rp Pl + |1Rp ' P — Ry Pl
= [|Rp" (P = P)llr + (R — Rp )P,

where the inequality comes from the triangle inequality.

The inequality above implies that for any constant ¢ we have
P(IP™ — Pl > ¢) <P(IRp! (P — P)llr + I(R5" — Rp")Plls > ¢).
Moreover, the right-hand side of the equation above is upper-bounded by
PR (P —Pllr > c/2or [I(R5" — Ry IPllr > ¢/2).
The subadditivity of probability measures then implies

P(|[P™ — Pt > ¢) <P(|R5 (P — P)[|r > ¢/2)
+P(I(RS" = Rp )Pl > ¢/2).

Take ¢ = 2max{d, 8>} and note that
P(IRp" (P — P)llr > max{8;,8:}) < P(IRp (P —P)llr > 81) < €/2,

and analogously P((Ry" — R51P > max{dy, 5,}) < €/2. O

Lemma 6. Suppose that the second moments of pyq exist forv =1,...Vand d = 1,...,D. Then
with probability at least 1 — €

Vv D A~
. 1 S P B [(Dyg — Pug)?
||:R—1(P_P)”F < Zv_l Zd—l [(p d 1% d) }
P Pomi

Y

€

where the expectation E is taken under the true data generating process P.
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Proof. The definition of Frobenius norm implies that for any x > 0

. 1 .
P(IR" (P —=P)llr > x) =P ZZF(pvd_pvd)z > x’
v da "V

ZZ pvd pvd

pvmln v

Z Zd (Pva — pvd)

x2

)
pvmln

where the last step follows from Markov’s inequality. Taking x to be

\/z

IZd 1 [Pvd_PvdH

pvmine
completes the proof. 0
Lemma 7. Suppose that the second moments of Pq exist forv =1,...Vand d = 1,...,D. Then
with probability at least 1 — €
Pv — ﬁV)Q]

\%
. E
(%! = R5 )Pl < —— \/ZH [(

where the expectation K is taken under the true data generating process P, and p, = Zgzl Pva,

R d -
Pv = Zd:l Pva.
Proof.

- - 1/2

I I ENERERCH

(RS — Rp)Pllr =
v d Pv pv

P

_1/2

N

- (Av_ v)2A
- ZZ%P%

v

y il

d

PvPy

1/2

p" Z pvd

PPy

1/2

(Av_ v) A
R e

v

13

PyPy



1/2

<Y by —p)?

Pymin v

The inequality above holds since (}_ 4 p24)/? < Y4 Pva = Pv-
Then, for any x > 0

1

PR = Rp Pl > %) <P [ 5— > (By—pu)” > %°
< ZVE((ﬁv _pv)Q)
h pvminx2 7

where the last line follows by Markov’s inequality. Taking

1 \/ZVE(pv_f)v)z

€

)

yields the desired result. ]

B.7.1 Estimation error of Pg:g;

Proof of Proposition|2| In a slight abuse of notation, let P denote the V x D matrix with (v, d)-entry
given by n.,q/Ng4. Let P™¥ the row-normalized version of this estimator.
Note that

ZZE[(f}Vd_pvd :ZZdel_pvd
v d

Zzpvd 1_pvd
_Zl_z pvd

l’Illl’l
D(1 — <)
h Nmin ‘
The first equality holds because n, 4 is a binomial distribution with parameter N4 and p,q4. The

second equality holds since the ) | p,q = 1. The second inequality comes from the fact that
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equals 1/V. Therefore, by Lemma |§] with probability at least 1 — €/2

B R 1 2D(1 — %)
IRp (P —P)|lF < v

vmin N min€

Moreover, since by assumption, pymin/D = v/V, we have that

2V2(1— )

R P —Pllr < Y.
1Rp* (P — Pl VDN

Lemma [7)implies that with probability at least 1 — € /2

A — 9. )2
”(:Rgl _ j{;l)P”F < 1 \/2 Zv E(pv pv)

vmin €

~ 2
1 \/QZdeE [(pvd_pvd)]
pvmin €
1 2D(1—3)
B pvmin Nmine
2V2(1— )
YZDNmine ’

~X

where the second equality holds because the estimators P,,q are unbiased and they are also indepen-
dent across documents.
Finally, Lemma implies that if Pro¥ is based on the row-normalization of the empirical frequen-

cies then

_ s(1-9) e
PY — (AW)™Y||: < .
P = AW <\ = o

with probability at least 1 — €. [

B.7.2 Estimation error of P."
Proof of Proposition 4] In a slight abuse of notation, let P denote the V x D matrix with (v, d)-entry
given by (v/Ng/V +1n,4)/(v/Ngq + Ng). Let P™¥ be the row-normalized version of this estimator.

As above, we show that

ONgpya | N
Napva — =9 + 8

T N
;;E[(pvd pvd)} ;% (\/N_d+Nd)2
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2 1
Pva — N+ v

<
;g Nmin+2Nr1n/il12+1

2py 1
I s
T 5 Nun + 2N 41
1
_ bi-9)
N + 2NY2 41

min

The first equality holds because n, 4 is a binomial distribution with parameter N4 and p,,4. The third
equality holds since the )} |, pya = 1.
Therefore, by Lemma@ with probability at least 1 — €/2

_ - 1 2D (1 — &)
IR (P — Pl < v
Pvmin || (N + 2N +1)e

min

Moreover, since by assumption, pymin/D = v/V, we have that

. 2v2(1 — L
IRp! (P — Pl < iow)

Note that
Z E Z(ﬁvd - pvd)2 = Z Z E(ﬁvd - pvd)2 + Z Z ]E(]avd - pvd)E(ﬁvd’ - pvd/)-
v d v d v d#d’

We use the bound for the first term again and for the second term, we know

1
N v _pv
E(pva —pva) = JN_T—Fdl'

So
A ~ 1 1— v(pvd + pvd’)
Z Z E(Ppva —pva)E(pvar — Pvar) ZZ Z N ( + PvaPva
v d#£d’ v d#d’ (VNa +1)2 \&

1 1_V(pv + Py ’)
- e (R )

d#d’ v

1 1
= Z (\/N_d——f—l)Q ;Pvdpvd’ - V

d£d’
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1 1
LN (1-7)
_ D*(1- 1)

TNy + 2NV 4

min

The third equality holds since the ) | p,q = 1. The first inequality comes from the fact that

maprvdpvd/ s.t. vaj =1 and p,; >0 forj=dord’

equals to 1 by Kuhn-Tucker conditions. Therefore,

D(D +1) (1-%)
. 2

min

Lemma [7)implies that with probability at least 1 — € /2

~ — 9. )2

vmin €

. D(D +1) (1 — %)
S 2 1/2
Pvmin Nmin + 2N+ 1

2(D + 1)V2(1 — L)
VD (N + 2N +1) €

Finally, Lemma implies that if Prov is based on the row-normalization of the minimax estimator
then

TSI il Gl B

Y2-e Ny, +2NY2 4

min

with probability at least 1 — €. ]

B.8 Topic estimation of FOMC1 corpus using Arora, Ge, Kannan & Moitra
(2012), Ke & Wang (2022) and LDA
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Figure 12: |Arora, Ge & Moitral (2012)’s estimator of A in the FOMCI corpus. Each panel shows the word
cloud of words of a topic (column in A matrix), where the font size is proportional to term’s weight in the

topic, and the top 5 terms with largetst weights are colored. The estimated anchor words for each topic is in the
caption.
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Figure 13: Ke & Wang| (2022)’s estimator of A in the FOMC1 corpus. Each panel shows the word cloud of
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Figure 14: Latent Dirichlet Allocation estimator of A in the FOMCI1 corpus with uniform priors. Each panel
shows the word cloud of words of a topic (column in A matrix), where the font size is proportional to term’s
weight in the topic, and the top 5 terms with largetst weights are colored. The estimated anchor words for each

topic is in the caption.
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