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Abstract

We study the Latent Dirichlet Allocation model, a popular Bayesian algo-

rithm for text analysis. We show that the model’s parameters are not iden-

tified, which suggests that the choice of prior matters. We characterize the

range of values that the posterior mean of a given functional of the model’s

parameters can attain in response to a change in the prior, and we suggest two

algorithms that report this range. Both of our algorithms rely on obtaining

multiple Nonnegative Matrix Factorizations of either the posterior draws of

the corpus’ population term-document frequency matrix or of its Maximum

Likelihood estimator. The key idea is to maximize/minimize the functional of

interest over all these nonnegative matrix factorizations. To illustrate the ap-

plicability of our results, we revisit recent work studying the effects of increased

transparency on the communication structure of monetary policy discussions

in the United States.
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1 Introduction

In this paper, we study the Latent Dirichlet Allocation (LDA) of Blei, Ng and

Jordan (2003), a popular off-the-shelf machine learning tool for the analysis of text

data. The model has achieved significant success in computer science and other

disciplines and has found some recent applications in economics.1 The model’s key

assumption is that the probability of a term appearing in a particular document is a

finite mixture of K latent topics. A topic, denoted as βk, is modeled as a probability

distribution over V terms in a given vocabulary. There are D documents, and each

of them is characterized by a vector θd containing the share assigned to each of

the K latent topics. The model’s parameters are the matrices B “ pβ1, . . . , βKq and

Θ “ pθ1, . . . , θDq. Independent Dirichlet priors are typically imposed on the columns

of these matrices.

Our first result (Theorem 1) shows that B and Θ are not identified, even be-

yond obvious topic permutations.2 This means there exist different observationally

equivalent parameter values (i.e., parameters that induce the same probability dis-

tribution over the data), not related to one another via a permutation. This lack of

identification is generic in the sense that most points in the parameter space have

observationally equivalent counterparts.

In most applications of the LDA model of which we are aware, the researcher

is usually interested in a real-valued function of B and Θ—which we refer to as a

functional and denote it as λpB,Θq. Some of these functionals depend only on Θ,

some depend only on B, and some depend on both of these parameters. We provide

examples in Section 6.1 and Section 6.2. Whatever the functional of interest is, the

typical way of estimating λpB,Θq in the LDA model is Bayesian. The researcher
1Hansen, McMahon and Prat (2018) use the model to study the effects of transparency on

central bank communication using FOMC transcripts from the Greenspan era. Bandiera et al.
(2020) study CEO behavior and firm performance using around 1, 000 CEOs’ diaries. A non-
exhaustive list of other applications include Budak et al. (2016) (third-party advertising), Mueller
and Rauh (2018) (political violence), Bhattacharya (2021) (procurement contests), and Munro and
Ng (2022) (analysis of categorical survey responses). Ke, Kelly and Xiu (2019) use the likelihood
of the LDA as a building block in a model to predict equity returns using text data.

2By topic permutations, we mean permutation of the columns of B and the rows of Θ.
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posits independent Dirichlet priors over the columns of B and Θ, uses the data to

form a posterior distribution, evaluates λp¨q at each posterior draw, and computes

the expected value of λpB,Θq.

Theorem 1 suggests that the Bayesian estimation of some functionals λ may be

very sensitive to the choice of priors over B and Θ, even in large samples; see Poirier

(1998); Gustafson (2009); Moon and Schorfheide (2012).3 Thus, we make it our

goal to quantify the extent to which the posterior mean of a functional λpB,Θq is

affected by the choice of prior. This exercise is part of the classical work on Robust

Bayesian analysis of Wasserman (1989), Berger (1990), and the more recent paper

of Giacomini and Kitagawa (2021). Note that our goal is not to provide a better

estimator for λpB,Θq but instead to quantify the sensitivity of the typical posterior

mean estimator to the choice of prior on the parameters pB,Θq. We think our paper

should be relevant to any economist interested in using the LDA model, as ready-

to-use packaged algorithms for implementing the LDA make specific choices about

the priors for the model’s parameters.4

Our second result (Theorem 2)—which is an application of the recent work of

Giacomini and Kitagawa (2021)—characterizes, for any finite sample and any data

realization, the range of posterior means that a functional λpB,Θq can achieve over a

particular class of priors. Namely, we consider all priors on pB,Θq that are consistent

with some fixed prior distribution over the population term-document probabilities

(i.e., the probability that a term t appears in document d). As we will explain

later in the paper, if we were to consider a finite grid of hyperparameters for the

Dirichlet prior distributions placed on the model’s parameters, the smallest and

largest posterior means for λpB,Θq could be obtained by running the LDA algorithm

for each of these hyperparameters. In general, however, the class we consider does
3The relation between identification and prior robustness follows the usual argument. If the

parameters in the likelihood are identified and the sample is large, the prior is unlikely to have
important effects in the Bayesian model’s output. However, if either of the premises fails, the
output of a Bayesian model will typically be sensitive to the choice of prior.

4The default priors on B and Θ are i.i.d. Dirichlet distributions, although there are plenty of
other suggestions in the literature. See Teh et al. (2006), Blei and Lafferty (2007), Williamson
et al. (2010), Zhou (2014), and Zhou, Cong and Chen (2015) for examples.
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not take this form and, more importantly, need not be finite. This makes the desired

prior-by-prior evaluation of the posterior means computationally difficult, to say

the least. Theorem 2 transforms an infinite-dimensional optimization problem (i.e.,

maximizing/minimizing the posterior mean of a function over a class of priors whose

elements are infinite-dimensional probability distributions) into the evaluation of the

posterior mean of the value function of a finite-dimensional optimization problem.

Our theoretical analysis naturally suggests two algorithms to evaluate the sen-

sitivity of the LDA output to the choice of prior. Both of these algorithms rely on

obtaining multiple Nonnegative Matrix Factorization (NMF) of either the posterior

draws of the population term-document frequency matrix (Algorithm 1) or its Maxi-

mum Likelihood estimator (Algorithm 2). In a nutshell, NMF (Paatero and Tapper,

1994; Lee and Seung, 2001) is a tool for matrix factorization and rank reduction,

similar to Singular Value Decomposition, but with positivity constraints.5 The use

of NMF for text analysis has been suggested before by Arora, Ge and Moitra (2012),

and their algorithm finds one specific solution of the NMF problem. Our algorithms,

which search over all possible solutions of the NMF problem, establish a connection

between Robust Bayesian analysis and the NMF problem.

Overview of the algorithms: Let Pj denote a posterior draw of the V ˆ

D population term-document probabilities. Algorithm 1 minimizes/maximizes the

functional of interest, λ, over all possible (column stochastic) NMFs of Pj. The

optimization of λ is solved by stochastic grid search over the set of solutions to

the NMF of Pj, by repeatedly solving the NMF problem.6 This algorithm is valid

regardless of the data configuration (number of words, topics, documents), but it is

computationally costly as it requires us to extract NMFs, and optimize λ, for each

posterior draw.
5The rank K NMF approximates a positive matrix P P RVˆD

` as the product of two positive
matrices BΘ, B P RVˆK

` and Θ P RKˆD
` . The quality of the approximation is assessed using

different versions of loss functions; for example I-divergence or Frobenius norm. If BΘ “ P , then
pB,Θq are said to provide an exact NMF of P . If pB,Θq minimize the loss functions, but BΘ ‰ P ,
then they are said to provide an approximate NMF.

6This procedure is tantamount to ‘(machine) learning’ the range of values of the functional λ
via random sampling as in Montiel Olea and Nesbit (2021).
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Algorithm 2 tries to alleviate the computational burden by optimizing λ only over

the NMFs of the Maximum Likelihood estimator of the population term-document

frequency matrix. This second algorithm is computationally less demanding, but

its justification is more complicated. In finite samples, the algorithm simply reports

the range of the function λ over all possible Maximum Likelihood estimators of the

model’s parameters. In large samples, it approximates the range of posterior means

with high probability, but only under a sequence where V and D are fixed and the

number of words per document grows large (Theorem 3).

To illustrate the applicability of our algorithms, we revisit Hansen, McMahon

and Prat (2018)’s (henceforth, HMP) work on the effects of increased ‘transparency’

on the ‘conformity’ of members of the FOMC. In particular, we focus on the Federal

Reserve’s October 1993 decision to release past and future transcripts of the FOMC.

The question of interest is how the change in transparency affected the discussion

inside the committee. In particular, we focus on the difference between the average

Herfindahl index in the meetings before and after October 1993. The off-the-shelf

implementation of the LDAmodel yields an estimated change in the Herfindahl index

of 31% with a 95% credible interval of r29%, 33%s. The range of posterior means

obtained after applying Algorithm 1 is r23%, 32%s, and the 95% robust credible set

is r19%, 35%s. Thus, we argue that the robust implementation of the LDA model

does not alter the qualitative results obtained from its off-the-shelf implementation.

Section F.1 of the Online Appendix analyzes other functionals of interest that do

not have the same degree of robustness.

Although the discussion on this paper focuses on the LDA model, our results

are also applicable to other topic models ; see Blei and Lafferty (2009), Blei (2012)

for excellent reviews on this subject. It is important to mention, however, that the

approach herein suggested differs quite significantly from the most recent literature

on topic models, which circumvents the model’s lack of identification by imposing

additional restrictions on the model’s parameter space; most notably, by assuming

the existence of anchor words as in Arora, Ge and Moitra (2012) and Arora et al.
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(2016). Broadly speaking, anchor words are defined as special terms in the vocabu-

lary that are exclusive to each specific topic. The existence of anchor words allows

the construction of non-Bayesian estimators for the topic distributions with provable

optimal statistical performance guarantees, see the recent work of Bing, Bunea and

Wegkamp (2020a), Bing, Bunea and Wegkamp (2020b) and Ke and Wang (2022).

Despite the theoretical and practical appeal of assuming the existence of anchor

words, it is not always clear whether this assumption is reasonable in a given appli-

cation. There is a long-standing practice in econometrics—going back, at least, to

the work on structural models of Koopmans and Reiersol (1950)—of testing the con-

ditions that enable the identification of statistical models; and, recently, Freyalden-

hoven et al. (2023) have suggested a procedure to test the existence of anchor words.

Two important remarks are in turn. First, even if one is willing to assume that an-

chor words do exist in a given application, there is no guarantee that neither the

standard nor the robust Bayes procedure will converge to the parameters that gen-

erated the data (simply because none of these procedures place ex-ante restrictions

on the parameter space). Second, if one incorrectly assumes that anchor words ex-

ist, there is no guarantee that any of the non-Bayesian estimators referenced above

will estimate any meaningful quantity (other than, perhaps, the “best” anchor word

approximation to the true data generating process). We further discuss these issues

in Sections E.5-E.7 of the Online Appendix.

The rest of the paper is organized as follows. Section 2 presents the model.

Section 3 shows that the model’s parameters are not identified. Section 4 presents

a characterization of the range of posterior means of a functional λ, and also of its

quantiles. Section 5 describes the algorithms. Section 6 presents a simple model

with two words, two topics, and two documents to illustrate our results; the section

also includes the empirical application of HMP. Section 7 concludes. Proofs of the

main results are collected in the Appendix. Additional results are presented in the

Online Appendix.
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2 Statistical Model

This section presents the basic building blocks of the Latent Dirichlet Allocation

model of Blei, Ng and Jordan (2003). The starting point is a collection of D doc-

uments indexed by an integer d P t1, . . . , Du. Each document contains Nd words.

Each word can be one of V terms in a user-selected vocabulary. The collection of

documents (the corpus) is denoted by C. The total number of words in the corpus

is N “
řD
d“1Nd.

The LDA model assumes there are K latent ‘topics’. Each topic k P t1, ¨ ¨ ¨ , Ku

is defined as a distribution over the V terms in the vocabulary, βk P ∆V´1.7 In

addition, the model posits that each document d is characterized by a document-

specific distribution over the K topics, θd P ∆K´1. The topics B “ pβ1, . . . , βKq and

the topic compositions θd determine the ‘mixture’ model for each word in document

d. In particular, the model assumes that each word wd,n in document d, where

n “ 1, . . . , Nd, is generated as follows

1. Choose one of K topics: zd,n „ CategoricalpK, θdq.8

2. Choose one of V terms from topic zd,n: wd,n „ CategoricalpV, βzd,nq.

Accordingly, if we let Pdpt|B, θdq denote the probability that a term t P t1, . . . , V u

appears in document d, the model yields

Pdpt|B, θdq “
K
ÿ

k“1

βt,kθk,d.

Let Θ “ pθ1, . . . , θDq be the topic distributions. The likelihood of corpus C is, thus,

7For any K, ∆K denotes the K-dimensional simplex: ∆K ” tx P RK`1
` :

řK`1
k“1 xk “ 1u.

8In the original formulation of Blei, Ng and Jordan (2003), zd,n is defined as a draw from a
multinomial distribution with parameter θd. The number of trials for the multinomial is implicitly
assumed to be equal to 1. This means that zd,n is a vector whose entries are either 0 or 1 and has
unit norm. Our formulation is equivalent, but we represent zd,n as an integer in t1, . . . ,Ku.
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parameterized by pB,Θq and given by

PpC|B,Θq “
D
ź

d“1

V
ź

t“1

pPdpt|B,Θqqnt,d

“

D
ź

d“1

V
ź

t“1

pBΘq
nt,d

t,d , (1)

where nt,d is the number of times term t appears in document d and pBΘqt,d denotes

the pt, dq entry of the matrix BΘ. In a slight abuse of notation, we write Pdptq

instead of Pdpt|B, θdq. We can collect the terms Pdptq in the V ˆ D matrix P and

use (1) to write

P “ BΘ. (2)

Thus, the population frequency of words in a document (represented by the columns

of P ) is restricted by the model to belong to a K-dimensional subset of the pV ´ 1q-

simplex.

Before turning to the discussion on identification, we briefly describe the two

popular approaches for inference about λpB,Θq using the likelihood above. The

first one is the Collapsed Gibbs sampler of Griffiths and Steyvers (2004). The

sampler assumes that the parameters θd, βk have independent Dirichlet priors with

scalar parameter α and η. The hyperparameters for the priors are typically chosen

heuristically, and there is some work suggesting that the choice of prior matters

(Wallach, Mimno and McCallum, 2009).

The second approach is the Variational Inference algorithm of Hoffman, Bach

and Blei (2010). The approach is, at its core, Bayesian and uses the same priors

as Griffiths and Steyvers (2004). However, instead of relying on a MCMC routine,

the Variational Inference approach solves an optimization problem to find the best

approximation to the true posterior within some class; see Blei, Kucukelbir and

McAuliffe (2017) for a comprehensive review on this subject.
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3 Identification

Let Sa,b denote the set of a ˆ b column stochastic matrices, that is, matrices

in which each column is a probability distribution (see p.253 of Doeblin and Cohn

(1993) for a definition). Let ΓK “ SV,K ˆ SK,D denote the parameter space for

(B,Θ).

We say that the parameters of the likelihood in (1) are identified if there exist

no pairs pB,Θq and pB1,Θ1q in ΓK that are observationally equivalent ; that is,

pB,Θq ‰ pB1,Θ1
q ùñ Pp¨|B,Θq ‰ Pp¨|B1,Θ1

q.

This is the standard definition of identification for parametric models in a finite

sample; see Ferguson (1967), p. 144. The requirement is that there cannot be two

different elements in the parameter space that induce that same distribution over

the data.

Theorem 1. Let 1 ă K ď mintV,Du. The parameters of the likelihood in (1), are

not identified, even beyond topic permutations. That is, there exist parameter values

pB,Θq ‰ pB1,Θ1q—not related to one another via column permutations of B and

row permutations of Θ—for which Pp¨|B,Θq “ Pp¨|B1,Θ1q.

Proof. See Appendix A.1.

We explain the logic behind our fairly simple observation. The likelihood in (1)

depends only on the product BΘ, which represents the probability of each term

appearing in each document. Thus, all we need to show is the existence of obser-

vationally equivalent parameters pB,Θq ‰ pB1,Θ1q, not related to one another via

label switching of the topics. This means we are looking for pairs of parameters for

which

BΘ “ B1Θ1.

The proof Theorem 1 shows that—absent further restrictions on the parameter
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space—such pairs of parameter values always exist. In fact, the proof shows that

any parameter pB,Θq such that B has (i) all elements different from zero and (ii) K

linearly independent columns will have observationally equivalent counterparts that

cannot be obtained via a re-labeling of the topics.

For the sake of exposition, we illustrate this point with an extremely basic ex-

ample where the number of terms and topics is two (V “ K “ 2) and the number

of documents D is arbitrary.

Figure 1 plots the vectors Pdptq, which represent the probabilities that a term

t appears in document d. Since there are two terms, the document-specific term

probabilities (represented by the black circles) can be placed on the 1-simplex (dotted

line). According to the model, each of these term-document probabilities is a convex

combination—with weights given by θd—of the topic distributions B “ pβ1, β2q (blue

circles). As long as both columns of B have all of their elements different from zero

(so that the columns of B belong to the interior of the simplex) and are linearly

independent, they can be changed to be anywhere on the thick red line to obtain

the same vectors Pdptq.

One potential complaint about this example is that it fails to satisfy the simple

and intuitive order condition for identification of structural parameters defined by

a system of equations: the number of unknown parameters pV ˆKq ` pK ˆDq “

2p2 ` Dq is larger than the number of equations V ˆ D “ 2D, for any number

of documents. Figure 2 presents a similar example to the figure above, but now

V “ 3 ą K “ 2. The number of unknown parameters is 2p3 ` Dq, and the

number of equations is 3D. If D ě 6, the number of equations is larger than the

number of parameters. Yet, the parameters remain only set-identified as the figure

below illustrates. Figure 1 and Figure 2 also show that the identified set for the

model’s parameters need not become tighter as the number of documents increases.

Section D in the Online Appendix further illustrates this point.

To translate the intuitive arguments in the figures above to a formal proof, we

show that the question of how many matrices pB,Θq exist such that BΘ equals
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(0,1)

(1,0)

pPdp1q,Pdp2qq1

∆1

β1

β2

Figure 1: Lack of identification when K “ V “ 2 and D is large. The small black
circles are the document-specific term probabilities. The dotted line is the 1-simplex.
The large blue circles represent one of the possible topic distributions B. The solid
red line is the set of all possible topic distributions.

(0,0,1)

(1,0,0)

(0,1,0)

pPdp1q,Pdp2q,Pdp3qq1

β1

β2

Figure 2: Lack of identification when K “ 2, V “ 3, and D is large. The small
black circles are the document-specific term probabilities—the columns of P . The
dotted line is the 2-simplex. The large blue circles represent one of the possible topic
distributions B. The solid red line is the set of all possible topic distributions.

some column stochastic matrix P is equivalent to inquiring about the uniqueness of

the exact NMF of P . It is well-known that, if P is a matrix with strictly positive
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elements that admits an NMF, then there are many distinct NMFs for it; see Section

3 in Donoho and Stodden (2004). This result does not immediately imply that the

parameters of the LDA model are not identified, as the model places an additional

restriction on P (namely, that its columns sum to one) and, in principle, such

a restriction could yield a unique factorization. We use the results in Laurberg

et al. (2008) to show that this is not the case: without further restrictions on the

parameter space we can always find different pairs of column stochastic matrices

pB,Θq, pB1,Θ1q such that BΘ “ B1Θ1, where the matrices are not related to one

another by a permutation operation.

A common reaction to the content of Theorem 1 is that, in lieu of the global

definition of identification, it could have been more fruitful to focus on whether or

not a particular point in the parameter space is identified. Following the classi-

cal definition of Rothenberg (1971) (see p. 578), we say that a point pB0,Θ0q in

the parameter space is identified if there are no other parameter values that are

observationally equivalent.

As explained above, the argument in the proof of Theorem 1 already shows that

any parameter pB0,Θ0q for which B0 has (i) all elements different from zero and (ii)

has K linearly independent columns is not identified, even beyond topic permuta-

tions. Unfortunately, these types of parameters make up for most of the parameter

space. In fact, under the typical Dirichlet priors, the probability of obtaining a draw

satisfying i) and ii) is one. This suggests that the lack of identification in the model

is generic.

4 Prior-Robust Bayesian Analysis

Gustafson (2009) and Giacomini and Kitagawa (2021), among others, have shown

that, in models where parameters are not identified, standard Bayesian analysis is

sensitive to the choice of prior. The argument is, in a nutshell, that the lack of

identification implies the likelihood function has flat regions, where the posterior

is completely determined by the prior. Theorem 2 in this section characterizes
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the sensitivity of posterior mean estimates of real-valued functions λpB,Θq over a

special class of priors, by providing an expression for the range of posterior means

of λpB,Θq. The characterization is valid for any number of words, topics, and

documents. Theorem 3 suggests a computationally cheaper approximation to the

range of posterior means. The approximation is only valid as the number of words

per document grows to infinity. We assume throughout that the function of interest

is invariant to topic permutations.

4.1 Range of Posterior Means

While pB,Θq are not identified, their product P ” BΘ is. Hence, the data

are informative about the reduced-form parameter P , but not about the struc-

tural parameters pB,Θq. Giacomini and Kitagawa (2021) interpret the prior on

the reduced-form parameter as ‘revisable prior knowledge’ (because this informa-

tion can be updated after seeing the data). They also refer to any prior information

about the distribution of the structural parameters given the reduced-form parame-

ters as ‘unrevisable prior knowledge’ (given that this information is never updated,

regardless of the data realization).

With this in mind, they suggest a convenient framework to protect researchers

from the unexpected influence that a potentially arbitrary choice of unrevisable prior

knowledge can have on posterior inference. In their framework, they first fix a prior,

πP , on the reduced-form parameter and then consider the class of priors over the

structural parameters pB,Θq that induce the distribution πP .

Mathematically, this corresponds to the following class of priors:

ΠB,ΘpπP q ”
 

πB,Θ | πB,ΘpBΘ P Sq “ πP pP P Sq, for any measurable S Ď SKV,D
(

,

where SKV,D collects the elements of SV,D that can be factorized as the product BΘ

for pB,Θq in ΓK .

We would like to emphasize that there is no theorem in Giacomini and Kitagawa
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(2021) or elsewhere stating that the class of priors ΠB,ΘpπP q is the ‘right’ set of priors

for conducting sensitivity analysis. There are indeed other classes of priors that have

appeared in the literature. For example, priors that are close to a baseline in terms

of Kullback–Leibler divergence as in Giacomini, Kitagawa and Uhlig (2019), or also

priors that are implicitly defined by the Kullback-Leibler divergence to a baseline

posterior as in Section 2.3 in Watson and Holmes (2016). We decided to focus on

ΠB,ΘpπP q for two reasons. First, working with this class of priors is quite convenient:

it is possible to describe the range of posterior means over ΠB,ΘpπP q analytically.

Second, under some regularity conditions, the smallest/largest posterior means are

close (in probability) to the frequentist estimator of the identified set (we discuss

this property after the statement of our Theorem 3). We think that extending

the sensitivity analysis for the LDA model to other classes of priors—in particular,

considering different possible priors for P (which is very relevant when documents do

not have that many words)—is an interesting topic for future research, but outside

the scope of this paper.

Because any prior π P ΠB,ΘpπP q generates a posterior over λ “ λpB,Θq, the

recommendation in Giacomini and Kitagawa (2021) is to report the set of posterior

means that can be attained in this class. Denote the posterior mean of λ based

on the prior π as EπrλpB,Θq|Cs. The results in Giacomini and Kitagawa (2021)

immediately allow us to describe the range of the posterior means for the functional

λ as the prior πB,Θ varies over ΠB,ΘpπP q.

Theorem 2. Suppose that λp¨q is a real-valued, measurable function and that

tλ P R | D pB,Θq P ΓK s.t. BΘ “ P and λpB,Θq “ λu

is a closed subset of R for every P . If πP is a proper prior on SKV,D (absolutely

continuous with respect to a σ-finite measure on this space), then

inf
πPΠB,ΘpπP q

EπrλpB,Θq|Cs “ EπP rλ
˚
pP q|Cs
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and

sup
πPΠB,ΘpπP q

EπrλpB,Θq|Cs “ EπP rλ
˚
pP q|Cs,

where

λ˚pP q ” min
B,ΘPΓK

λpB,Θq s.t. BΘ “ P (3)

and

λ
˚
pP q ” max

B,ΘPΓK

λpB,Θq s.t. BΘ “ P, (4)

provided λ˚pP q and λ
˚
pP q are integrable with respect to the posterior distribution of

P , for almost every data realization C.

Proof. The proof follows directly from Theorem 2 in Giacomini and Kitagawa (2021).

See Appendix A.2 for details.

Theorem 2 characterizes the smallest and largest values of the posterior mean

of λ over the class of priors ΠB,ΘpπP q. The result shows that, mechanically, the

range of posterior means can be obtained as follows. For each posterior draw of

the term-document population frequencies—which we have denoted as P—one min-

imizes/maximizes the function of interest, λ, over all parameter values pB,Θq in the

parameter space for which BΘ “ P ; that is over all exact NMFs of P . Averaging the

lower/upper ends over the posterior draws of P gives the range of posterior means.

Importantly, the result applies to any vocabulary size (V ), number of documents

(D), and topics (K); and there is no need to speculate on whether identification

improves when D is large or not. The range of posterior means could be large or

small, depending on the data.

Of course, when λpB,Θq is invariant to permutations of pB,Θq and there is a

unique pair pB,Θq (up to permutations) associated with each draw of P (which

would happen if the parameters of the model were identified up to permutations),

then the range of posterior means would be a singleton. In general, the range of
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posterior means will not be a singleton, and the width of the range will depend on

the data realization.

Robust quantiles and credible sets. Even though the statement of Theorem 2

focuses on the range of posterior means for λpB,Θq, our result can be immediately

applied to report robust quantiles and robust credible sets. For simplicity, suppose

that we are interested in finding the smallest value of q P R for which

inf
πPΠB,ΘpπP q

π pλpB,Θq ď q|Cq ě 1´ α. (5)

Denote such value by q˚1´α and note that it can be interpreted as a robust 1 ´

α posterior quantile; in the sense that it is the smallest threshold for which the

posterior probability of the event “λpB,Θq ď q˚1´α” is at least 1 ´ α, regardless of

the chosen prior π P ΠB,ΘpπP q. In Section B of the Online Appendix, we show that

Theorem 2 implies that, if q˚1´α is the 1´α quantile of λ˚pP q, then q˚1´α is a robust

1´α quantile in the sense of (5). This means that, if we denote q˚
α
as the α quantile

of λ˚pP q, then the quantiles of λ˚pP q and λ˚pP q give a 1´ α robust credible set in

the sense that

inf
πPΠB,ΘpπP q

π
´

λpB,Θq P
”

q˚
α{2
, q˚1´α{2

ı
ˇ

ˇ

ˇ
C
¯

ě 1´ α.

4.2 Approximation to the Range of Posterior Means

The evaluation of the functions λ˚ and λ
˚ is not without difficulties. From

equations (3) and (4), it follows that the functions λ˚ and λ
˚ correspond to the

value functions of the optimization problem that tries to minimize/maximize over

all parameters for which BΘ “ P , that is over all exact NMFs of P . The next

theorem suggests a computationally less expensive strategy to approximate the range

of posterior means that is applicable to models in which the number of words per

document is quite large.

Let pBML and pΘML denote any pair that maximizes the likelihood in (1), where
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the maximization is over pB,Θq P ΓK .9 Let

pPML ” pBML
pΘML, (6)

and let P0 denote the true value of the population term-document frequency matrix.

Note that, in general, the Maximum Likelihood estimator in (6) is not the term-

document frequency matrix, since this estimator need not have nonnegative rank

K.

Theorem 3. Assume that λp¨q is continuous and fix V , K, and D. Let the number

of words in document d, Nd, go to infinity for each document in the corpus. Sup-

pose that πP satisfies the assumptions of Theorem 2 and that it leads to a (weakly)

consistent posterior in the sense of Ghosal et al. (1995).10

Suppose, in addition, that P0 has an exact NMF of at most rank K—i.e., there

exists pB0,Θ0q P ΓK such that B0Θ0 “ P0. Then the Hausdorff distance11 between

the range of posterior means

«

inf
πPΠB,ΘpπP q

EπrλpB,Θq|Cs, sup
πPΠB,ΘpπP q

EπrλpB,Θq|Cs

ff

,

and

”

λ˚p pPMLq, λ
˚
p pPMLq

ı

converges in probability to 0.

Proof. See Appendix A.3.
9Algebra shows that maximizing the likelihood is equivalent to finding an approximate NMF—

in the sense of Lee and Seung (2001)—of the sample term-document frequency matrix, which we
define as the V ˆ D matrix, where the pt, dq entry reports the relative frequency of term t in
document d.

10That is for any neighborhood V0 of P0:

πP pP R V0|Cq
p
Ñ 0.

The neighborhood P0 only considers the space of matrices with rank at most K, and the neigh-
borhood is defined in terms of spectral norm, i.e. V0 “ tP is of rank at most K| ||P ´ P0|| ă εu
for some small ε, where ||A|| “

?
max eigenvalue of A1A.

11The Hausdorff distance between two intervals ra, bs and rc, ds is given by maxt|a´ c|, |b´ d|u.
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Theorem 3 shows that, as the number of words per document gets large, we

can approximate the smallest and largest posterior mean of λpB,Θq over the class

of priors ΠB,Θ by the smallest and largest values that λpB,Θq attains over all the

exact NMFs of pPML.

From a frequentist perspective, the bounds of the set rλ˚p pPMLq, λ
˚
p pPMLqs can be

thought of as plug-in estimators of the bounds of the smallest interval containing

the identified set for the function λpB,Θq at P0. The argument goes as follows.

Under our assumptions, we can show that the functions λ˚p¨q, λ˚p¨q are continuous.

If pPML
p
Ñ P0, Theorem 3 immediately shows that the range of posterior means

converges to the smallest interval containing the identified set for λpB,Θq at P0.

In terms of the details of the proof, we exploit the weak consistency of πP to

approximate the range of posterior means. The proof has four main steps.

In Step 1, we show (Lemma 1 in Section A in the Online Appendix) that λ˚, λ˚

as defined in (3) and (4) are continuous at P0 (the true population term-frequency

matrix). Steps 2 and 3 show that the continuity result and the concentration of

πP around P0 immediately imply that EπP rλ
˚
pP q|Cs and EπP rλ

˚
pP q|Cs—which by

Theorem 2 constitutes the smallest and largest posterior means—converge in proba-

bility to λ˚pP0q and λ
˚
pP0q. Step 4 argues the range of values of λ over the NMFs of

P0 is approximately the same as the range of values of λ over the parameters pB,Θq

that maximize the likelihood.

5 Robust Bayes Algorithms for Text Analysis

This section presents two robust, parallelizable algorithms for the LDA model.

The first algorithm (Algorithm 1) follows immediately from the theoretical deriva-

tions in Theorem 2 and reports the posterior means of the functions defined in (3)

and (4). This algorithm is valid regardless of the data configuration (number of

words, topics, documents). The algorithm requires that for each posterior draw of

P we optimize the function of interest, λ, over all parameter values pB,Θq P ΓK in

the parameter space for which BΘ “ P .
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Our second algorithm (Algorithm 2) is an approximation to the output of Algo-

rithm 1. The approximation we propose therein is justified by Theorem 3, under the

assumption that the number of words per document grows large (while the words

in the vocabulary, topics, and documents remain fixed). Algorithm 2 reduces the

computational demands of Algorithm 1 by optimizing the function of interest only

at the Maximum Likelihood estimator of P , which we denote as pPML.

In general, the problem of finding matrices B P RVˆK
` ,Θ P RKˆD

` such that

BΘ “ P or BΘ « P is known as the Nonnegative Matrix Factorization Problem

(Paatero and Tapper, 1994; Lee and Seung, 2001). As it will become clear, the

implementation of the functions defined in (3)-(4) in Theorem 2 (which is the core

of Algorithm 1) consists of evaluating λ over all exact (column stochastic) NMFs,

that is, all matrices pB,Θq P ΓK for which BΘ “ P .

5.1 Algorithm 1

We first describe the algorithm that computes the smallest and largest posterior

means that can be attained for the function λpB,Θq as we vary the priors for pB,Θq

over the class ΠB,ΘpπP q. Mathematically, the smallest and largest posterior means

are given by

inf
πPΠB,ΘpπP q

EπrλpB,Θq|Cs and sup
πPΠB,ΘpπP q

EπrλpB,Θq|Cs. (7)

These smallest and largest posterior means should be of interest to any researcher

that wants to understand the sensitivity of the LDA’s output to the choice of prior.

Note that we are not interested in proposing a better estimator for the functional

λpB,Θq; instead, we are simply trying to quantify the sensitivity of the typical

posterior mean estimator for λpB,Θq to the choice of prior as measured by (7).

If the class of priors under consideration, which we denoted as ΠB,ΘpπP q, had

a finite number of prior distributions, the smallest and largest posterior means for

the parameter λpB,Θq could be obtained by running the LDA algorithm for each of
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these priors. In general, ΠB,ΘpπP q is not a finite set and, to further aggravate the

computational burden, its elements are in fact infinite-dimensional probability dis-

tributions. This makes the desired prior-by-prior evaluation of the posterior means

computationally difficult, to say the least.

Theorem 2 allows us to avoid the prior-by-prior evaluation to compute the terms

in (7) by showing such terms equal to

EπP rλ
˚
pP q|Cs and EπP rλ

˚
pP q|Cs, (8)

where the functions λ˚p¨q and λ
˚
p¨q are defined in Theorem 2. Thus, Theorem 2

justifies Algorithm 1 to evaluate the smallest and largest posterior mean for λpB,Θq

as defined in (7).

Algorithm 1 Computing inf { supπPΠB,ΘpπP q
EπrλpB,Θq|Cs

1. Fix a prior on pB,Θq and refer to the distribution it induces over P “ BΘ as
πP .

2. Generate J posterior draws of pB,Θq and compute Pj ” BjΘj for each draw.

3. For each draw Pj compute λ˚pPjq and λ
˚
pPjq as defined in (3) and (4).

4. Report
«

1

J

J
ÿ

j“1

λ˚pPjq,
1

J

J
ÿ

j“1

λ
˚
pPjq

ff

.

Algorithm 1 above provides a significant simplification to the problem of assessing

the sensitivity of the LDA’s output to the choice of priors. Instead of evaluating

the posterior mean of λpB,Θq at each possible element in ΠB,ΘpπP q, Algorithm 1

simply computes the posterior mean of λ˚pP q and λ˚pP q using πP as a prior. Note

that the baseline prior πP used by Algorithm 1 is simply the push-forward measure

of the chosen prior on pB,Θq, under the function BΘ. In Section C of the Online

Appendix, we show that the draws Pj in Step 2 are indeed the posterior draws

corresponding to the prior πP .
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Finally, we also note that, if we let q˚
α{2

and q˚1´α{2 denote the α{2 and 1 ´ α{2

quantiles of tλ˚pPjquJj“1, and tλ
˚
pPjqu

J
j“1, then

”

q˚
α{2
, q˚1´α{2

ı

is a robust credible set as described in Section 4.1. Although Theorem 2 provides

a theoretical justification for reporting these quantiles, we warn the reader about

the well-known fact that variational approximations to the posterior distribution

tend to underestimate its variance (Giordano, Broderick and Jordan, 2018). This

means that the quantiles of the variational approximation to the posterior should

be interpreted with caution, as they could be artificially tight.

5.2 Algorithm 2

The evaluation of the functions λ˚ and λ
˚ is not without difficulties. We have

already explained (after the statement of Theorem 2) that the functions λ˚ and λ˚

correspond to the value functions of the optimization problem that tries to mini-

mize/maximize λpB,Θq over all exact NMFs of P (that is, over all parameters for

which BΘ “ P ). Step 3 in Algorithm 1 requires such an optimization problem to

be solved for each posterior draw of P .

Theorem 3 allows us to replace Step 3 by a single evaluation of the functions λ˚

and λ˚. Theorem 3 shows that the terms in (7) can be approximated—in probability

and provided the number of words per document grows large—by

λ˚p pPMLq and λ
˚
p pPMLq.

The suggested procedure to approximate the range of posterior means in (7) can

be summarized by Algorithm 2.

We warn the reader that, for any document, the empirical frequencies of some

terms will be exactly equal to zero in the case in which V is much larger than Nd.

This can create spurious ‘anchor words’ and the approximation of Algorithm 2 can
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Algorithm 2 Approximating inf { supπPΠB,ΘpπP q
EπrλpB,Θq|Cs

1. Let pPML be defined as in (6).

2. Compute λ˚p pPMLq and λ
˚
p pPMLq.

3. Report
”

λ˚p pPMLq, λ
˚
p pPMLq

ı

.

lead to sets that are too narrow. We illustrate this in Section 6.1. This suggests

that a tight range of posterior means based on Algorithm 2 should be interpreted

with caution, as it can misrepresent the sensitivity of posterior mean estimators.

5.3 Computing the Range of Functionals of the NMF

We suggest approximating the interval

”

λ˚pP q, λ
˚
pP q

ı

(9)

by using a stochastic grid of dimension M over the NMFs of P .

The framework of Montiel Olea and Nesbit (2021) can help guide our choice for

the size of the random grid. Mathematically, we start with the image of the set

S ” tpB,Θq P ΓK | pB,Θq “ P qu, (10)

under the function λ. Thus, the set of interest in (9) can be viewed as the smallest

‘band’ containing the set λpSq. The suggestion of Montiel Olea and Nesbit (2021),

based on statistical learning theory, is to take M random draws pBm,Θmq from the

set S (according to some distribution G) and approximate (9) by

„

min
mPt1,...,Mu

λpBm,Θmq, max
mPt1,...,Mu

λpBm,Θmq



.

The difference between the true set and its approximation can be theoretically

judged using the misclassification error criterion (how often a randomly drawn value
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of λpB,Θq according to G will be in one set but not in the other). Montiel Olea and

Nesbit (2021) show that the probability that an approximation has a misclassifica-

tion error of at most ε is at least 1 ´ δ by setting M “ p2{εq logp2{δq. This result

holds uniformly over all possible probability distributions that place probability one

on the true set. Thus, one can achieve an approximation with misclassification error

of at most 6% with probability at least 94% (ε “ δ “ 0.06), by taking M “ 120. Al-

though there are different ways of sampling from the set S in (10), we use Algorithm

1 from the recent paper of Laursen and Hobolth (2022).

6 Illustrative Examples

6.1 Numerical Illustration of our Main Results

We illustrate our main results with a stylized example where the number of

terms, topics, and documents equals 2 (that is, V “ K “ D “ 2). This is the same

model we used in Figure 1, but assuming there are only two small black circles. For

simplicity, we assume that the two documents have the same length (N1 “ N2 “ N).

Algebra shows that in this example the model’s likelihood—for which we provided

a general expression in (1)—depends only on

p1 ” β1,1θ1,1 ` β1,2p1´ θ1,1q, and p2 ” β1,1p1´ θ2,2q ` β1,2θ2,2 (11)

and it is given by

PpC|B, θq “ p
n1,1

1 p1´ p1q
N´n1,1p

N´n2,2

2 p1´ p2q
n2,2 .

This stylized example will be used to illustrate our results. First, we give two

concrete examples of parameter values that induce the same likelihood. This will

illustrate the lack of identification of the model’s parameters established in The-

orem 1. Second, we illustrate the sensitivity to the choice of prior that arises in

standard Bayesian inference by providing two concrete examples of priors on pB,Θq
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that induce the same distribution on pp1, p2q but yield very different predictions

about the posterior mean of the parameter of interest. Third, we show that the

posterior means for the parameter of interest obtained by these two priors are con-

tained (as expected) in the range of posterior means described in Theorem 2, for a

given distribution on pp1, p2q. We also quantify the uncertainty arising from pp1, p2q

by reporting robust credible sets. Fourth, we report the approximation to the range

of posterior means in Theorem 3 and discuss the quality of the approximation de-

pending on sample size.

1. Lack of identification of the model’s parameters: Two parameter values that

induce the same likelihood. In this example, the model’s lack of identification be-

yond topic permutations is rather obvious: The likelihood function only depends

on pp1, p2q, but these values in turn depend on four parameters: β1,1, β1,2, θ1,1, θ2,2.

Moreover, a given population frequency p1 can be explained by either (a) a topic

that places all of its mass on term 1, and a document that discusses such topic with

probability p1, or (b) a topic that places probability p1 on term 1, and a document

that places all of its mass on such topic:

β1,1 “ 1, β1,2 “ 0, and θ1,1 “ p1, θ2,2 “ 1´ p2,

or

β1,1 “ p1, β1,2 “ p2, and θ1,1 “ 1, θ2,2 “ 1.

As we explained in Section 3, the lack of identification is more general than this

example and in fact arises in any model where 1 ď K ď tminV,D}.

2. Sensitivity to the choice of prior: Two choices of priors that yield different

predictions about the posterior mean of the parameter of interest. We now use our

stylized example to illustrate the sensitivity of standard Bayesian inference to the

choice of prior. To make our point, suppose that the parameter of interest is the
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Herfindahl index of the topic distribution in the first document; that is,

λpB,Θq “ θ2
1,1 ` p1´ θ1,1q

2.

This is the same function that we will analyze in our empirical application in Sec-

tion 6.2. We provide a more general definition of the Herfindahl index in (12) in

Section 6.2.

Consider the following two prior distributions on pB,Θq:

2.1) Prior 1: Θ is a point mass at the identity matrix (so that, under the prior,

document 1 only covers topic 1, and document 2 only covers topic 2), and

β1,1, β1,2
i.i.d
„ U r0, 1s. Denote this prior distribution as π1.

2.2) Prior 2: B is a point mass at the identity matrix (so that, under the prior,

topic 1 assigns probability 1 to term 1, and topic 2 assigns probability 1 to

term 2), and θ1,1, θ2,2
i.i.d
„ U r0, 1s. Denote this prior distribution as π2.

Both of these priors induce the same distribution over the parameters that enter

the likelihood (namely, p1, p2
i.i.d
„ U r0, 1s). However, they make very different prior

assumptions about the parameter of interest λpB,Θq. Under π1, the prior distribu-

tion over the Herfindahl index is dogmatic at 1. Consequently, it never gets updated,

and the posterior equals the prior regardless of the observed data. Under π2, the

prior mean of the Herfindahl index is 2/3, and we show in Section E.2 in the Online

Appendix that the posterior admits a simple closed-form solution that depends only

on the number of times term 1 appears in document 1 pn1,1q and the document size

pNq.

Figure 3 plots the posterior mean of the Herfindahl index under both π1 and π2

considering two different sample sizes (N P t10, 100u), and all possible data real-

izations (n1,1 P t1{N, 2{N, . . . , 1u). The reported posterior mean for the Herfindahl

index can be extremely sensitive to the choice of prior (for relative comparison, note

that the theoretical range of the Herfindahl index is the interval r1{2, 1s).12

12An important message from Figure 3, though, is that not all data realizations need to be
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(a) Posterior mean of HHI under Prior 1
and 2 with N “ 10.
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(b) Posterior mean of HHI under Prior 1
and 2 with N “ 100.

Figure 3: Sensitivity of posterior mean to the choice of prior.

3. Range of posterior means. Figure 3 has already shown that the choice of

prior matters. We were able to make this point by carefully choosing two different

priors that induce two very different means for the parameter of interest. Note that

the difference between the two priors will depend on the data realization and the

sample size. In the case where the priors make similar predictions for the posterior

means (N “ 100 and n1,1{N—close to the end points of Figure 9b), we do not know

if other priors could lead to a larger discrepancy. Thus, it becomes relevant to have

a general procedure that can report the range of posterior means for this and other

applications.

Before proceeding with the description of the range of posterior means for this

example, we must stress that some further structure is required if we are to avoid

trivial ranges of posterior means for the parameters of interest. For instance, suppose

that, in the example above, we decided to report the range of posterior means for

the Herfindahl index as one considers all possible priors on pB,Θq. Without further

restrictions, the reported range would be quite uninformative and anticlimactic: any

value in the parameter space for λpB,Θq is attainable as a posterior mean, simply

by choosing arbitrary dogmatic priors on pB,Θq.

Consequently, there has to be some ex-ante restriction on the class of priors over

associated with an extremely wide range of posterior means. For instance, consider the case in
which N “ 100. Note that, for data realizations in which the share of term 1 is close to either zero
or 1, the posterior mean of the Herfindahl index is not very different under the priors π1, π2.
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pB,Θq under consideration for reporting ranges of posterior means. One possibility,

suggested in the recent work of Giacomini and Kitagawa (2021), is to fix the prior

distribution on the parameters of the model that are identified. In the example

above, this would be tantamount to looking for the range of posterior means for the

Herfindahl index assuming that the prior distribution over pB,Θq, say, induces the

prior distribution pp1, p2q
i.i.d.
„ U r0, 1s.

Figure 4 reports the corresponding range of posterior means for this class, which

is nonempty and includes π1 and π2 (for comparison, the posterior mean obtained

under π2 is also included in the graph). The construction of this range is based on

the result of our Theorem 2 in Section 4, which follows Theorem 2 in Giacomini

and Kitagawa (2021). Our range depends on all data, both n11 and n22, and in the

figures below we fix n2,2 at N{2. In Section E.2 of the Online Appendix, we provide

an intuitive description of how to obtain the closed-form solutions for the range of

posterior means in this example by deriving the functions λ˚ and λ˚ in Theorem 2.13
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(a) Range of posterior means of HHI:
N “ 10.
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(b) Range of posterior means of HHI:
N “ 100.

Figure 4: Range of posterior means under pp1, p2q
i.i.d.
„ U r0, 1s.

Finally, we also report the 95% Robust Credible Set for λpB,Θq in Figure 5,

following the construction in Section 4. The Robust Credible Sets are a simple way

to assess the uncertainty coming from the fact that pp1, p2q are unknown. When
13In general, these closed-form solutions will not be available. However, as shown in Section 5,

we can approximate the range of posterior means by computing the function of interest λ over
nonnegative matrix factorizations of each posterior draws of P . Figure 3 in Section E.3 in the
Online Appendix compares this approach with the range reported in Figure 4.
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N “ 10, the Robust Credible Set equals the whole range of the Herfindahl index

(the interval r0, 1{2s). The Robust Credible Set is considerably smaller for some

data realizations when N “ 100.
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(a) 95% Robust Credible Set for HHI:
N “ 10.
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(b) 95% Robust Credible Set for HHI:
N “ 100.

Figure 5: Robust Credible Set under pp1, p2q
i.i.d.
„ U r0, 1s.

4. Approximating the range of posterior means. Theorem 3 states that the

range of posterior means for λpB,Θq can be approximated by evaluating λ over all

possible NMFs of the Maximum Likelihood estimator of P . In our example, the

Maximum Likelihood estimator is given by the frequency count. Figure 6 computes

the approximation when N “ 10 and N “ 100.
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(a) Approximation to the range of pos-
terior means of HHI: N “ 10.
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(b) Approximation to the range of pos-
terior means of HHI: N “ 100.

Figure 6: Approximation to the range of posterior means under pp1, p2q
i.i.d.
„ U r0, 1s.

Note that, when N “ 10 and the frequencies n1,1{N are close to zero or 1, the

robust range of posterior means collapses to a singleton, when in reality the range
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of posterior means based on Algorithm 1 is wider. Intuitively, this happens because

the Maximum Likelihood estimator is very close to a matrix that admits an anchor

word factorization. It is known that such factorization is unique so λ˚p pPMLq and

λ
˚
p pPMLq will coincide.

Theorem 3 states that the range of posterior means and its suggested approx-

imation are close to each other, provided the number of words in each document

becomes arbitrarily large. We conduct a small-scale Monte Carlo exercise based on

our toy model to illustrate this is indeed the case.

We set the parameters B0 “ I2, Θ0 “ r .2 .8.8 .2 s, which implies that P 0 “ Θ0. Hence.

p0
1 “ 0.2, p0

2 “ 0.8 and λpB0,Θ0q “ 0.22 ` p1 ´ 0.2q2 “ 0.625. We continue to use

the prior distribution pp1, p2q
i.i.d.
„ U r0, 1s. As described in the sections above, the

upper bound to the range of posterior means under this parameterization is 1, and

the lower bound is 0.625. A closed-form formula for λ˚pp1, p2q in this example can

be found in Section E.2 in the Online Appendix. The details of the Monte Carlo

exercise are also provided in Section E.4 in the Online Appendix.

We perform this Monte Carlo exercise for two document sizes N “ 10 and N “

1000. Figure 7 displays the Monte Carlo distribution of the lower end of the range

of posterior means (Figure 7a) and its approximation (Figure 7b). Both estimators

concentrate around the true lower bound of the identified set when N “ 1000.

Additional figures in Section E.4 in the Online Appendix, displays the difference

between the lower end of the range of posterior means and its approximation. As

Theorem 3 predicts, as N becomes larger, the difference between the two becomes

small.

6.2 Empirical Application

We revisit the work of Hansen, McMahon and Prat (2018) (henceforth HMP)

studying the effects of increased ‘transparency’ on the discussion inside the FOMC

when deciding monetary policy. HMP focus on FOMC transcripts from August 1987

to January 2006. This period covers the 150 meetings in which Alan Greenspan was
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(a) λ˚p pPMLq. (b) Erλ˚pP q|Cs.

Figure 7: MC performance of λ˚p pPMLq and Erλ˚pP q|Cs.

chairman. The transcripts can be obtained directly from the website of the Federal

Reserve. We followed HMP in merging the transcripts for the two back-to-back

meetings on September 2003, and we also dropped the meeting on May 17, 1998.14

As a result, we ended up with 148 documents.

HMP exploit the Federal Reserve’s October 1993 decision to release past and

future transcripts of the FOMC. After 1993, the FOMC members became aware

that past transcripts existed, and future transcripts would be published with a

5-year lag. For more details concerning this natural experiment, see Meade and

Stasavage (2008). The question of interest is how this change affected the discussion

inside the committee. To this end, HMP use the LDA model to construct several

measurements that intend to summarize the discussions inside each meeting. These

measurements are regressed against the dummy for transparency regime change after

October 1993, as well as other covariates. We use their application to illustrate the

applicability of our algorithm. We focus on how ‘concentrated’ the discussions were

before and after the change in transparency policy as we explain in detail below.

We removed non-alphabetical words, words with a length of one, and common

stop words. We also constructed the 150 most frequent bigrams (combinations of two

words) and 50 most frequent trigrams (three words). We then stemmed all the words
14The meetings on September 2003 are the only back-to-back meeting in the sample. Merging

them makes the LDA assumption of independence across documents more plausible in this example.
Regarding the meeting on May 17, the beginning of the transcript states: “No transcript exists
for the first part of this meeting, which included staff reports and a discussion of the economic
outlook.”
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using a standard approach. We used the Natural Language Toolkit (nltk) library

in Python, its PorterStemmer package for word stemming, and its Collocation

package for the bigrams and trigrams.

When constructing the term-document matrix, we treated one entire meeting as

a document. This stands in contrast with the approach of HMP, which treated every

speaker’s interjection as a separate document. In our opinion, the independence of

documents in the corpus (which is assumed by the model) is more reasonable when

the analysis is conducted at the meeting level.

HMP focus on two components of the transcripts: the economic situation dis-

cussion (FOMC1) and the monetary policy strategy discussion (FOMC2). These

sections are not sign-posted, but we manually tried to match the separation rules

used by HMP. At the end, we construct two separate term-document matrices, one

for each section. The dimension of FOMC1 is 20, 293ˆ 148, and that of FOMC2 is

11, 976 ˆ 148. The total words in each section are 1, 101, 549 and 475, 013, respec-

tively. We report the results for FOMC1 in this section and collect the results for

FOMC2 in Section F in the Online Appendix.

For each section, we rank the remaining terms by their term frequency-inverse

document frequency (tf-idf) score and keep those with the highest tf-idf score: 200

terms for FOMC1 and 150 for FOMC2. We picked a smaller size of the vocabulary

compared to HMP to illustrate the approximation to the range of posterior means

discussed in Theorem 3, in which we require the number of words in each document

to be large relative to V andD. We are now left with two term-document matrices of

dimension 200ˆ 148 and 150ˆ 148 each. The average number of words per meeting

is 2309 (FOMC1) and 853 (FOMC2). Figure 8 plots the word cloud for FOMC1.

We focus on a very particular aspect of the discussion in each meeting: the ‘topic

concentration’, which we measure using the Herfindahl index of each document’s

topic distribution. This function is invariant to topic permutations. Letting θi,t

be the weight of ith topic in meeting at time t, the Herfindahl index for the topic
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Figure 8: Word cloud of terms in FOMC1 after preprocessing. The size of the words
is proportional to their frequencies. Words linked using underscore “_” are bigrams
(two words) or trigrams (three words).

distribution is given by

Ht ”

K
ÿ

i“1

θ2
i,t. (12)

We have slightly abused notation as Ht is clearly a function of Θ. The interpretation

of the Herfindahl index follows the standard logic of market competition. If there is a

topic that monopolizes the discussion in a meeting, the Herfindahl index will be close

to 1. If there is perfect competition among topics—that is, each of them appears with

frequency 1{K—the index will be exactly Kp1{K2q “ 1{K. Therefore, increases in

the value of the index suggest a move towards a less competitive, monothematic

meeting. Following HMP, we choose the number of latent topics to be K “ 40.

Our main functional of interest in this section is the percent change in the average

Herfindahl index in the meetings ‘pre’ and ‘post’ the October 1993 decision to release

past and future transcripts; this is

λpB,Θq “ 100

˜

1

|Pre|

ÿ

tPPre

Ht ´
1

|Post|

ÿ

tPPost

Ht

¸

M 1

|Pre|

ÿ

tPPre

Ht, (13)

where the set Pre collects the index of all the meetings before October 1993, Post
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collects the index of all the meetings after this period, and | ¨ | is the set’s cardinality.

Other functionals of Interest: Another functional of interest in this

application is the ‘transparency coefficient’ in the regression of the concentration

measure on a dummy for the date that Federal Reserve changed its transparency

policy (October 1993) and controls. More precisely, the functional of interest is the

parameter λ in the regression

Ht “ constant` λDpTransqt ` γXt ` εt. (14)

The controls Xt include a regression dummy, the Baker, Bloom and Davis (2016)

Economic Policy Uncertainty (EPU) index, a dummy for whether the meeting

spanned two days, the number of meeting attendants who held a Ph.D. degree,

and the number of unique stems used in that meeting. Because Ht is a function of

Θ, then the coefficient λ in (14) is a function of Θ itself. In Section F.1 of the Online

Appendix, we explain exactly how to compute the posterior mean of the parameter

λ.

While (13) and (14) only depend on Θ, there are other functions of interest that

could depend only on B or both. One example is the informativeness of a term t to

identify a particular topic. This can be measured as

λpB,Θq “
K
ÿ

k“1

β2
t,k

M

˜

K
ÿ

k“1

βt,k

¸2

.

6.2.1 Results

We start by reporting the prior and posterior mean corresponding to an off-the-

shelf implementation of the LDA model. The baseline priors for B “ pβ1, . . . , β40q

and Θ “ pθ1, . . . , θ148q are the same as in HMP:

βk
i.i.d.
„ Dirichletp0.025q and θd

i.i.d.
„ Dirichletp1.25q. (15)
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The prior for Θ stated in (15) corresponds to a prior mean for the Herfindahl index

of 0.0441 in each meeting. Section F.2 of the Online Appendix presents results for

priors in which the columns of B and Θ are independent and uniformly distributed

in their respective simplices.

Figure 9a (blue solid line) reports a numerical approximation to the prior density

of the functional λpB,Θq in (13), which measures the percent change in the average

Herfindahl index between the pre- and post-October 1993 meetings. The prior mean

for λpB,Θq can be shown to be equal to 0. The 2.5% and 97.5% quantiles of the prior

distribution (depicted as stars on the horizontal axis) are approximately r´4%, 4%s.

We define πP to be the prior distribution over P ” BΘ induced by the Dirichlet

priors in (15). Due to the multiplicity of NMFs, there are different priors on pB,Θq

that induce the same πP . The red lines in Figure 9a depict two of those priors,

which are constructed by taking prior draws of P according to πP , and then taking

the values of pB,Θq that minimize/maximize the functional (13). The figure shows

that these three different priors induce roughly the same distribution over λpB,Θq.

The blue solid line in Figure 9b reports the posterior distribution of λpB,Θq,

which is based on the variational approximation to the posterior of pB,Θq suggested

in Hoffman, Bach and Blei (2010). The posterior mean is approximately 31%, and

the 95% credible interval based on the quantiles of the posterior distribution is

r29%, 33%s.

Thus, the standard implementation of the LDA clearly suggests there was an

increase in the topic concentration in the meetings after the change in transparency

policy.

We would like to understand if the increase in the topic concentration of FOMC

meetings after October 1993 can be considered a robust finding, not driven solely by

the influence of the prior. The fact that the prior and posterior distributions reported

in Figure 9 are so different already shows that the off-the-shelf implementation of

the LDA model is not merely reproducing the prior. It is also well understood that

in any set-identified parametric model (not only the LDA), Bayesian estimation and
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(a) Prior density of λpB,Θq.
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(b) Posterior density of λpB,Θq.

Figure 9: Prior and posterior densities for λpB,Θq and range of posterior means.

inference are sensitive to (i) the prior over unidentified parameters, (ii) the prior

over identified parameters, and (iii) the parametric assumptions embedded in the

likelihood function. Thus, fully assessing the robustness of the results in Figure 9

requires separating and understanding the relative contributions of changes in (i)-

(ii)-(iii) to the sensitivity of the reported results. Unfortunately, to the best of

our knowledge, there is no general approach to conduct this comprehensive type of

sensitivity analysis.

As discussed in Section 4, we focus on understanding how the posterior mean of

λpB,Θq changes when we consider all possible priors on the class ΠB,ΘpπP q. Since

this class fixes the prior πP on the identified parameter P , this means that our

exercise is only useful to report the sensitivity to point (i) above, keeping (ii) and

(iii) fixed.15 In this application, we fix πP to be the prior that (15) induces over

P “ BΘ. The solid red lines in Figure 9b report the posterior distributions of

λ˚pP q and λ˚pP q based on this prior, which can also be interpreted as the posterior

distributions of λpB,Θq based on the two different priors depicted in red in Figure 9a.

According to Theorem 2, the posterior mean of these distributions (vertical, red,

dotted lines) describes the smallest and largest posterior mean that can be attained

over ΠB,ΘpπP q. The range of posterior means obtained after applying Algorithm 1 is
15However, it is possible to informally analyze (ii) by considering a different prior πP . Section F.2

reports figures analogous to Figure 9 below assuming that πP is the prior induced by assuming
that the columns of pB,Θq are independent uniformly distributed on their simplices.
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r23%, 32%s. We take J “ 200 draws from the posterior of pB,Θq, using variational

approximation, and compute P “ BΘ for each draw. We then take M “ 120

random NMFs of P using Algorithm 1 of Laursen and Hobolth (2022) and compute

λ˚pP q, λ
˚
pP q. The number M is such that the probability that a randomly drawn

value of the posterior mean falls in the true range, but not in its approximation or

vice versa (misclassification error) is at most 5.88% with probability at least 94.22%

(ε “ δ “ 0.0588). This follows from the results of Montiel Olea and Nesbit (2021)

to ‘(machine) learn’ parameter regions.

The stars in Figure 9b report the 95% robust credible set which is r19%, 35%s.

These results indicate that, if we measure the change in topic concentration using

the functional (13), then the finding that the change in transparency of October

1993 lead to an increase in topic concentration is robust to the choice of prior in the

set ΠB,ΘpπP q. We note that not all functionals of interest exhibit this robustness. In

Section F.1 of the Online Appendix, we analyze the coefficient λ in (14) and show

that the range of posterior means includes positive and negative values.

7 Conclusion

This paper studied the Latent Dirichlet Allocation (LDA) of Blei, Ng and Jordan

(2003), a popular Bayesian model for the analysis of text data.

This paper showed that the parameters of the LDA model are not identified:

different parameter combinations induce the same distribution over observables, even

beyond topic permutations (Theorem 1). This lack of identification is generic: most

of the points in the parameter space have observationally equivalent counterparts.

Theorem 1, thus, suggests that the choice of priors will affect the model’s output,

even with infinite data.

Using recent results from the literature on Robust Bayesian analysis, the paper

characterized, theoretically and algorithmically, how much a given continuous real-

valued function λp¨q of the model’s parameters varies in response to a change in

the prior (Theorem 2). In particular, Theorem 2 provided a closed-form expression
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for the largest/smallest values for the posterior mean of λ over a class of priors de-

fined by a distribution over P , the population matrix containing the term-document

probabilities.

Leveraging the closed-form characterization of the largest/smallest posterior

mean of λ, this paper suggested two algorithms (Algorithms 1 and 2) that can

be used to described this range. Both of our algorithms rely on obtaining NMFs of

either the posterior draws of the population term-document frequency matrix (P )

or of its Maximum Likelihood estimator ( pPML). In both cases, the key idea is to

maximize/minimize the functional of interest over all the possible NMFs of these

matrices.

The use of NMF for text analysis has been suggested before by Arora, Ge and

Moitra (2012). However, to the best of our knowledge, the robust algorithms for text

analysis herein suggested are novel.
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A Appendix

A.1 Proof of Theorem 1

Proof. Take a column stochastic matrix B with K linearly independent columns

with all elements different from zero. Such a matrix can always be constructed.

Take an arbitrary column stochastic matrix Θ of dimension K ˆD. Let P ˚ ” BΘ.

It suffices to show that there are other column stochastic matrices pB1,Θ1q that

are not permutations of pB,Θq that satisfy the equation

P ˚ “ B1Θ1. (16)

Typically, any pair of nonnegative matrices (not necessarily stochastic) that solve

(16) is called an exact Nonnegative Matrix Factorization (NMF) of P ˚; see Equation

(1) in Laurberg et al. (2008). Thus, by construction, the pair pB,Θq is an NMF of

P ˚.

Suppose the column stochastic matrices pB,Θq that solve (16) are unique up to

permutations. This implies that the set of nonnegative matrices (not necessarily

column stochastic) that solve (16) must be unique up to a scaled permutation, that

is, unique up to right multiplying B by a matrix P ¨D (where P is a permutation

matrix and D is a positive diagonal matrix) and left multiplying Θ by pP ¨Dq´1.16

Theorem 3 in Laurberg et al. (2008) and the uniqueness of the nonnegative matrix

factorization of P ˚ (up to scaled permutation) implies that the set of V row vectors

in B must be boundary close. Definition 5 in Laurberg et al. (2008) says that a

collection of V vectors ts1, . . . , sV u in RK
` is boundary close if for any i ‰ j we can

16If the nonnegative solutions of (16) (without imposing column stochasticity) were not unique
up to a scaled permutation, then there would be nonnegative matrices pa, bq, pc, dq such that
ab “ P˚ “ cd, but neither pa, cq nor pb, dq are related to one another by a scaled permutation. Let
Qa denote the diagonal matrix that contains the sums of the columns of a. Clearly, ã ” apQaq

´1

is column stochastic. Moreover, since P˚ is column stochastic, a straightforward argument implies
that so is b̃ ” pQaqb. Defining c̃ and d̃ analogously, we have found two pairs of column stochastic
matrices (not related to one another by a permutation) such that ãb̃ “ P˚ “ c̃d̃. Thus, if the
column stochastic matrices that solve (16) are unique up to permutation, then the nonnegative
matrices (not necessarily column stochastic) that solve Equation (16) are unique up to scaled
permutation.
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find v P t1, . . . , V u such that sv,i “ 0 and sv,j ‰ 0.

Note, however, that the set of row vectors in B cannot be boundary close, as B

was chosen to have all of its elements different from zero.

A.2 Proof of Theorem 2

It is sufficient to verify that the assumptions of Theorem 2 in Giacomini and

Kitagawa (2021).

We first verify their Assumption 1. First, πP is—by assumption–a proper, abso-

lutely continuous prior. Also, the identified set for pB,Θq given P , defined as

ISB,ΘpP q ” tpB,Θq P ΓK |BΘ “ P u

is nonempty πP -almost surely. This holds by assumption because πP places proba-

bility 1 on SKV,D, the set of matrices that can be written as a product of B and Θ

for some pB,Θq P ΓK . The same argument also implies that the set

ISλpP q ” tλ P R | λpB,Θq “ λ for some pB,Θq P ΓK s.t. BΘ “ P u,

is also nonempty πP -almost surely. Thus, Assumption 1-i) in Giacomini and Kita-

gawa (2021) is verified.

Second, the function g : ΓK Ñ SKV,D given by gpB,Θq “ BΘ is continuous. Since

ISB,ΘpP q “ g´1pP q, then this set is a closed set in ΓK , πP -almost surely. This verifies

Assumption 1-ii) in Giacomini and Kitagawa (2021).

Third, by assumption, the set ISλpP q is a closed subset of R for every P . This

verifies Assumption 1-iii) in Giacomini and Kitagawa (2021).

Lastly, we have assumed that λ˚pP q and λ˚pP q are integrable with respect to the

posterior distribution of P , for almost every data realization C. This means that

the conditions of Theorem 2 in Giacomini and Kitagawa (2021) are satisfied.
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A.3 Proof of Theorem 3

Let SKV,D collect the column-stochastic matrices of dimension V ˆ D that can be

factorized as the product BΘ for pB,Θq in ΓK . We remind the reader that, for such

matrices P , we have defined

λ˚pP q ” min
B,ΘPΓK

λpB,Θq s.t. BΘ “ P

and

λ
˚
pP q ” max

B,ΘPΓK

λpB,Θq s.t. BΘ “ P

in (3) and (4) of the paper.

Proof. We prove the theorem in four steps.

Step 1: Lemma 1 in Section A in the Online Appendix shows that λ˚ and λ˚ are

continuous in SKV,D.

Step 2: Our Theorem 2—based on Theorem 2 in Giacomini and Kitagawa (2021)—

shows that in any finite sample the range of posterior means over ΠB,ΘpπP q is given

by

„
ż

λ˚pP qdπP pP |Cq,

ż

λ
˚
pP qdπP pP |Cq



.

Step 3: Since πP leads to a (weakly) consistent posterior in the sense that, for any

neighborhood V0 of P0,

πP pP R V0|Cq
p
Ñ 0,

we show that

ż

λ˚pP qdπP pP |Cq
p
Ñ λ˚pP0q, and

ż

λ
˚
pP qdπP pP |Cq

p
Ñ λ

˚
pP0q.
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The convergence result follows from the algebra below:

∣∣∣∣ż λ˚pP qdπP pP |Cq ´ λ˚pP0q

∣∣∣∣ “ ∣∣∣∣żpλ˚pP q ´ λ˚pP0qqdπP pP |Cq

∣∣∣∣
(as

ż

dπP pP |Cq “ 1),

ď

ż

P :PPV0

|λ˚pP q ´ λ˚pP0q|dπP pP |Cq

`

ż

P :PRV0

|λ˚pP q ´ λ˚pP0q|dπP pP |Cq

ď sup
P :PPV0

|λ˚pP q ´ λ˚pP0q|

` 2

ˆ

sup
P :PRV0

|λ˚pP q|
˙

πP pP R V0|Cq.

The compactness of ΓK and the weak consistency of the posterior then imply (by

the Theorem of the Maximum):

∣∣∣∣ż λ˚pP qdπP pP |Cq ´ λ˚pP0q

∣∣∣∣ ď sup
P :PPV0

|λ˚pP q ´ λ˚pP0q|` opp1q.

Using the continuity of λ˚p¨q at P0 shown in Step 1 yields

∣∣∣∣ż λ˚pP qdπP pP |Cq ´ λ˚pP0q

∣∣∣∣ “ opp1q.

An analogous argument gives the result for the upper limit. Consequently, this step

shows that bounds of the range

„
ż

λ˚pP qdπP pP |Cq,

ż

λ
˚
pP qdπP pP |Cq



converge in probability to

”

λ˚pP0q, λ
˚
pP0q

ı

.

Step 4: Let pPML be defined as in (6). As the number of words per document
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Nd Ñ 8 for each d, then

pPML
p
Ñ P0. (17)

The continuity of λ˚p¨q and λ˚p¨q at P0 then gives

λ˚p pPMLq
p
Ñ λ˚pP0q, and λ

˚
p pPMLq

p
Ñ λ

˚
pP0q.
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