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APPENDIX A: MAIN RESULTS

A.1. Lemma 1

We now show that Assumptions 1 and 2 imply that given a collection r ∈ Rn×m of ‘active’ constraints
(m ≤ n − 1) the maximum response is determined in closed-form (and up to sign) by the Karush-Kuhn-
Tucker conditions of programs (2.5) and (2.6). The following Lemma constitutes the basis of Theorem 1.

Lemma 1 Suppose that Assumptions 1 and 2 hold. Let r be a matrix of dimension n×m collecting the
gradients of the ‘active’ (binding) constraints at a solution x∗(µ) of the mathematical program (2.5), then :

a) vk,i,j(µ) is given by either plus or minus the norm of the residual of the projection of Σ1/2Ck(A)′ei into
the space spanned by the columns of Σ1/2r; that is

(A.1) vk,i,j(µ) =
(
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
)1/2

,

or

(A.2) vk,i,j(µ) = −
(
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
)1/2

,

where
MΣ1/2r ≡ In − Σ1/2r(r′Σr)−1r′Σ1/2.

b) If in addition vk,i,j(µ) 6= 0, then x∗(µ) is given by

x∗(µ) = Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ).

Consequently, the sign of vk,i,j(µ) depends on which of the two values of x∗(µ) in the equation above (the
one with (A.1) in the denominator or the one with (A.2)) satisfies the sign restrictions that are not in r.

Proof: Let S(µ) denote the n×ms matrix of ms ‘sign’ restrictions and let Z(µ) denote the n×mz matrix of
‘zero’ restrictions. For notational simplicity, we deliberately ignore the dependence of the equality/inequality
restrictions on µ. The problem in equation (2.5) is equivalent to

(A.3) vk,i,j(µ) ≡ max
x∈Rn

e′iCk(A)x subject to x′Σ−1x = 1, S′x ≥ 0ms×1, Z′x = 0mz×1.

The auxiliary Lagrangian function is given by

L(x, λ, w1, w2;µ) = e′iCkx− λ(x′Σ−1x− 1)− w′1(S′x)− w′2(Z′x).

Assumptions 1–2 imply that we can characterize the maximum response using the Karush-Kuhn-Tucker
conditions for the mathematical program in (2.5). The Karush-Kuhn-Tucker necessary conditions for this
problem are as follows:

Stationarity : C′k(A)ei − 2λΣ−1x− Sw1 − Zw2 = 0n×1,

Primal Feasibility : x′Σ−1x = 1,

S′x ≥ 0ms×1,

Z′x = 0mz×1,

Complementary Slackness : w1i(e′iSx) = 0 ∀ i = 1 . . .ms,
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plus the additional dual feasibility constraint requiring the Lagrange multipliers, w1i, to be smaller than or
equal to zero.

Let x∗(µ) be one (out of possibly many) maximizers of the program of interest and suppose that the n×m
matrix r collects all the restrictions that are active (binding). Because of Assumption 1 and 2 , the matrix
r is of full rank m and m must be smaller than or equal n − 1. Using Stationarity, Primal Feasibility, and
Complementary Slackness at x∗ we get

0 = x∗′[Ck(A)′ei − 2λ∗Σ−1x∗ − Sw1 − Zw2] = x∗′Ck(A)′ei − 2λ∗x∗′Σ−1x∗ − x∗′Sw1 − x∗′Zw2

= x∗′Ck(A)′ei − 2λ∗ − x∗′Sw1 − x∗′Zw2

(where we have used x∗′Σ−1x∗ = 1)

= x∗′Ck(A)′ei − 2λ∗

(where we have used x∗′Z = 0mz×1 and complementary slackness)

= vk,i,j(µ)− 2λ∗,
where vk,i,j(µ) denotes the value of the maximum response when the constraints in r are active. Thus, the
Lagrange multiplier λ∗ is unique and given by

λ∗ =
1
2
vk,i,j(µ).

Note also that λ∗ 6= 0 if and only if vk,ij(µ; r) 6= 0. We now show that there are unique w∗1 and w∗2 that satisfy
the Karush-Kuhn Tucker conditions. Let w∗ denote the nonzero components of w∗1 and all the components
of w∗2 . Note that left multiplying the stationarity condition by Σ and rearranging the terms we have :

2λ∗x∗′ =
(
Ck(A)′ei − rw∗

)′
Σ,(

Ck(A)′ei − rw∗
)′

Σ
(
Ck(A)′ei − rw∗

)
= 4(λ∗)2x′Σ−1x(A.4)

= 4(λ∗)2

(where we have used x∗′Σ−1x∗ = 1)

= 4
(1

2
vk,i,j(µ)

)2

= vk,i,j(µ)2.

Consequently the value function given active constraints r is given by either

vk,i,j(µ) =
[(
Ck(A)′ei − rw∗

)′
Σ
(
Ck(A)′ei − rw∗

)]1/2
,

or

vk,i,j(µ) = −
[(
Ck(A)′ei − rw∗

)′
Σ
(
Ck(A)′ei − rw∗

)]1/2
.

We will use the first order conditions to find the vector of Lagrange multipliers w∗ and show that they are
unique. Note that

0 = 2λ∗r′x∗ =
[
r′Σ(Ck(A)′ei − rw∗)

]
=

[
r′ΣCk(A)′ei − r′Σrw∗

]
.

Under the assumptions of the lemma, r is of rank m. The equation above holds if and only if
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w∗ = (r′Σr)−1r′ΣCk(A)′ei.

Consequently, the Lagrange multipliers for the active restrictions are unique. To conclude the proof, we get
an explicit expression of the value function in terms of µ. To do so, note that

Σ1/2
(
Ck(A)′ei − rw∗

)
= Σ1/2Ck(A)′ei − Σ1/2rw∗

= Σ1/2Ck(A)′ei − Σ1/2r(r′Σr)−1r′ΣCk(A)′ei

=
(
In − Σ1/2r(r′Σr)−1r′Σ1/2

)
Σ1/2Ck(A)′ei

=
(
In − PΣ1/2r

)
Σ1/2Ck(A)′ei

= MΣ1/2rΣ
1/2Ck(A)′ei.

Therefore, the equation above and (A.4) imply that either

vk,i,j(µ) =
[
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
]1/2

or

vk,i,j(µ) = −
[
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
]1/2

.

Furthermore, since any solution for which r is the set of binding constraints satisfies 2λ∗x∗′ = (Ck(A)′ei −
rw∗)′Σ, then for any vk,i,j(µ) 6= 0 the solution x∗ should be given by either

x∗ = Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/[
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
]1/2

,

or

x∗ = −Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/[
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
]1/2

.

In any case the Lagrange multipliers for the active constraints are given (as shown above) by,

w∗ = (r′Σr)−1r′ΣCk(A)′ei.

A.2. Proof of Theorem 1

The choice set of program (2.5) is non-empty (by Assumption 1) and compact (because of the ellipsoid
constraint BB′ = Σ). Hence, the maximum exists. Let x∗ ∈ Rn be a solution and let r∗ be the set of
constraints that are active at x∗.

Step 1: We show first that

vk,i,j(µ) ≥ max
r∈R

(
max{f+

max(µ; r), f−max(µ; r)}
)
.

We do so by considering two different cases.

Case 1.1: Take any r ∈ R, and assume first that vk,i,j(µ; r) 6= 0. If 1ms (x∗+(µ; r)) = 0, then

f+
max(µ; r) = vk,i,j(µ; r)− 2c ≤ c− 2c = −c < vk,i,j(µ),
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where the first equality above follows from the definition of f+
max and the two remaining inequalities follow

from the definition of the penalty term c.
Note, however, that if r ∈ R is such that 1ms (x∗+(µ; r)) = 1, then x∗+(µ; r) satisfies all the equality and

inequality restrictions in (2.5) and, by construction, also satisfies the ellipsoid constraint

x∗+(µ; r)′Σ−1x∗+(µ; r) = 1.

Consequently, vk,i,j(µ) ≥ f+
max(µ; r) for all r ∈ R. An analogous argument shows that vk,i,j(µ) ≥ f−max(µ; r).

This implies that

vk,i,j(µ) ≥ max{f+
max(µ; r), f−max(µ; r)},

for all r ∈ R such that vk,i,j(µ; r) 6= 0.

Case 1.2: Consider now any r such that vk,i,j(µ; r) = 0. If there is no feasible point x∗ that gives such a value,
then f+

max(µ; r) = f−max(µ; r) = −2c < vk,i,j(µ). If there is such a feasible point x∗ 6= 0 then f+
max(µ; r) =

f−max(µ; r) = 0. Since x∗ is in the choice set of the program (2.5), then f+
max(µ; r) = f−max(µ; r) = 0 ≤

vk,i,j(µ).
Therefore, Case 1.1 and 1.2 imply that

vk,i,j(µ) ≥ max{f+
max(µ; r), f−max(µ; r)} for all r ∈ R.

Step 2: We now show that

vk,i,j(µ) ≤ max
r∈R

(
max{f+

max(µ; r), f−max(µ; r)}
)
.

Again, we consider two cases.

Case 2.1: Assume first that vk,i,j(µ) 6= 0. Without loss of generality, let us assume that vk,i,j(µ) > 0 (the
case in which vk,i,j(µ) < 0 is completely analogous). Let r∗ ∈ R denote the set of active restrictions (which
by Assumptions 1 and 2 has at most n − 1 columns) at the solution x∗ (this is one out of the potentially
many solutions to the program). By Lemma 1 we know that

vk,i,j(µ) =
(
e′iCk(A)Σ1/2MΣ1/2r∗Σ1/2Ck(A)′ei

)1/2
,

and

x∗(µ; r∗) = Σ1/2
(
MΣ1/2r∗

)
Σ1/2Ck(A)′ei

/(
e′iCk(A)Σ1/2MΣ1/2r∗Σ1/2Ck(A)′ei

)1/2
.

Since this point satisfies the sign restrictions not in r∗ (because it is a solution), then(
e′iCk(A)Σ1/2MΣ1/2r∗Σ1/2Ck(A)′ei

)1/2
= f+

max(µ; r∗).

Consequently,

vk,i,j(µ) = f+
max(µ; r∗) ≤ max

r∈R

(
max{f+

max(µ; r), f−max(µ; r)}
)
.

Case 2.2: If vk,i,j(µ) = 0, there is an x∗ 6= 0 in the choice set. Hence, the Karush-Kuhn-Tucker conditions
imply that Ck(A)′ei is a linear combination of the active constraints that generate the value of zero (which
means, by definition of the algorithm, that there is an r∗ such that f+

max(µ; r∗) = f−max(µ; r∗) = 0).

Therefore, vk,i,j(µ) = f(µ; r∗) ≤ maxr∈R
(

max{f+
max(µ; r), f−max(µ; r)}

)
.
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As the result, the value function vk,i,j(µ) is obtained by computing the Karush-Kuhn-Tucker points in
Lemma 1 for each r, penalizing the value vk,i,j(µ; r) if not feasible, and maximizing over all the possible
values of r.

The proof for the lower bound is analogous;

vk,i,j(µ) = min
r∈R

(
min{f+

min(µ; r), f−min(µ; r)}
)
,

with:
f+
min(µ; r) ≡ vk,i,j(µ; r) + 2(1− 1ms (x∗+(µ; r)))c,

f−min(µ; r) ≡ −vk,i,j(µ; r) + 2(1− 1ms (x∗−(µ; r)))c.

A.3. Lemma 2

Lemma 2 Suppose that Assumptions 1-3 hold. Let r(µ) be a matrix of dimension n× l collecting the gra-
dients of the ‘active’ (binding) constraints at a solution x∗(µ) of the mathematical program (2.5) such that
vk,i,j(µ; r(µ)) 6= 0. Then vk,i,j(µ; r(µ)) is differentiable with respect to µ with the derivative v̇k,i,j(µ; r(µ))
given by


∂vk,i,j(µ;r(µ))

∂vec(A)

∂vk,i,j(µ;r(µ))
∂vec(Σ)

 =

 ∂vec(Ck(A))
∂vec(A) (x∗(µ; r(µ))⊗ ei)−

∑l

k=1 w
∗
k
∂vec(rk(µ))
∂vec(A) x∗(µ; r(µ))

λ∗(Σ−1x∗(µ; r(µ))⊗ Σ−1x∗(µ; r(µ)))−
∑l

k=1 w
∗
k
∂vec(rk(µ))
∂vec(Σ) x∗(µ; r(µ))

 ,
where rk(µ) denotes the k-th column of r(µ),

x∗(µ; r(µ)) = Σ1/2
(
MΣ1/2r(µ)

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r(µ)),

λ∗ ≡
1
2
vk,i,j(µ; r(µ)), w∗ ≡ [r(µ)′Σr(µ)]−1r(µ)′ΣCk(A)ei,

and w∗k is the k-th component of the vector w∗.

Proof: Note first that Assumption 3 implies that r ≡ r(µ) is differentiable with respect to µ. Moreover,
since vk,i,j(µ; r) 6= 0 the function

vk,i,j(µ; r) =
(
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
)1/2

is differentiable as well. Moreover, the function

x∗(µ; r) ≡ Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r)

is also differentiable. Therefore,

dvk,i,j(µ; r)
dµ

=
d[e′iCk(A)x∗(µ; r)]

dµ

(since vk,i,j(µ; r) = e′iCk(A)x∗(µ; r))

=
dx∗(µ; r)

dµ
C′k(A)ei +

d(x∗(µ; r)′ ⊗ e′i)vec(Ck(A))
dµ

,

(where we have re-written e′iCk(A)x∗ as (x∗′ ⊗ e′i)vec(Ck(A)))

=
dx∗(µ; r)

dµ
C′k(A)ei +

dvec(Ck(A))
dµ

(x∗(µ; r)⊗ ei)

(where we have applied the chain rule for matrix derivatives).
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We now use the envelope theorem to compute this derivative. Note that —using Assumptions 1 and 2—
Lemma 1 shows the existence of unique multipliers λ∗ ∈ R and w∗ ∈ Rl such that

Ck(A)′ei = λ∗2Σ−1x∗(µ; r) + rw∗.

Therefore,

dvk,i,j(µ; r)
dvec(A)

=
dx∗(µ; r)
dvec(A)

[
λ∗2Σ−1x∗(µ; r) + rw∗

]
+
dvec(Ck(A))
dvec(A)

(x∗(µ; r)⊗ ei)

and

dvk,i,j(µ; r)
dvec(Σ)

=
dx∗(µ; r)
dvec(Σ)

[
λ∗2Σ−1x∗(µ; r) + rw∗

]
+
dvec(Ck(A))
dvec(Σ)

(x∗(µ; r)⊗ ei).

Note also that because x∗(µ, r) satisfies the ellipsoid constraint

0 =
dx∗(µ; r)′Σ−1x∗(µ; r)

dvec(A)
= 2

dx∗(µ; r)
dvec(A)

Σ−1x∗(µ; r)

and, also, since the equality constraints are met,

0 =
dr(µ)′x∗(µ; r(µ))

dvec(A)

=
dx∗(µ; r)
dvec(A)

r(µ) +
(
dr1(µ)
dvec(A)x

∗(µ; r(µ)), · · · ,
drl(µ)
dvec(A)x

∗(µ; r(µ))
)
,

where rk(µ) denotes the k-th column of r(µ). Consequently,

dvk,i,j(µ; r)
dvec(A)

=
dvec(Ck(A))
dvec(A)

(x∗(µ; r)⊗ ei)−
l∑

k=1

w∗k
dvec(rk(µ))
dvec(A)

x∗(µ; r),

where w∗k is the k-th entry of the vector of lagrange multipliers w∗. This gives the partial derivative of
vk,i,j(µ; rl(µ)) with respect to vec(A). We note that this derivative can also be written as

dvk,i,j(µ; r)
dvec(A)

=
dvec(Ck(A))
dvec(A)

(x∗(µ; r)⊗ ei)−
dvec(r(µ)′)
dvec(A)

(x∗(µ; r)⊗ Il)w∗,

which is the expression given in the overview. Finally, to get the derivative with respect to vec(Σ) we note
that

0 =
dx∗(µ; r)′Σ−1x∗(µ; r)

dvec(Σ)
= 2

dx∗(µ; r)
dvec(Σ)

Σ−1x∗(µ; r)− (Σ−1x∗(µ; r)⊗ Σ−1x∗(µ; r)),

and

0 =
dr(µ)′x∗(µ; r(µ))

dvec(Σ)

=
dx∗(µ; r(µ))
dvec(Σ)

r(µ) +
(
dr1(µ)
dvec(Σ)x

∗(µ; r(µ)), · · · ,
drl(µ)
dvec(Σ)x

∗(µ; r(µ))
)
.

Consequently,

dvk,i,j(µ; r)
dvec(Σ)

= λ∗(Σ−1x∗(µ; r)⊗ Σ−1x∗(µ; r))−
l∑

k=1

w∗k
dvec(rk,l(µ))
dvec(Σ)

x∗(µ; r).

A.4. Proof of Theorem 2

Structure of the proof: The proof proceeds in five steps. First, we show that Assumptions 1 and 2
imply that the choice set of program (2.5) is non-empty for any µ̃ in a neighborhood of µ. Second, we show
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that the choice set of program (2.5) is both lower and upper-hemicontinuous correspondence at µ. Third,
we use the continuity of the choice set and the Maximum theorem to establish continuity of vk,i,j(·) at µ.
Fourth, we use Lemma 1 and the continuity of vk,i,j(·) to show that

max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h} ≤ lim inf

N→∞
tN (vk,i,j(µN )− vk,i,j(µ)).

Finally, we use Lemma 1, Theorem 1, and Lemma 2 to show (by contradiction) that

lim sup
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)) ≤ max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h}.

Step 1 : By Assumption 1 there is a point x∗ ∈ Rn that belongs to the choice set of program (2.5). Let
Z∗(µ) ∈ Rn×me denote the restrictions in program (2.5) that are active at x∗. By Assumption 2, we know
that me ≤ n − 1. Let S∗(µ) ∈ Rn×mi denote all the other restrictions that are not in Z∗(µ). This means
that S∗(µ)′x∗ > 0mi×1 (since these restrictions are not in Z∗(µ)). Note first that Assumption 2 implies
there is ε1 > 0 such that λmin(µ) ≡ min eig(Z∗(µ)′Z∗(µ)) > ε1. Since x∗ is feasible we can also pick ε2
such that (s∗m(µ)/||s∗m(µ)||)′x∗(µ) is larger than ε2 for each m ∈ {1, 2, . . . ,mi}. Define

U(µ) ≡ {µ̃ | λmin(µ̃) > ε1, (s∗m(µ̃)/||s∗m(µ̃)||)′x∗ > ε2 ∀m, ||Z∗(µ̃)′x∗|| <
√
ε1ε2/2} ∩M.

By construction µ ∈ U(µ). Moreover, the continuity of Z(·) and S(·) and openness ofM implies that Z∗(·)
and S∗(·) are continuous and therefore U(µ) is open. We now show that for every µ̃ ∈ U(µ) there is x̃ ∈ Rd

that satisfies the equality restrictions in Z∗(µ̃) and also the inequalities in S∗(µ̃) with slack. To formalize
this point, define

(A.5) x̃ ≡ x̃(µ̃, µ) ≡ x∗ −NZ∗(µ̃)x
∗,

where NZ∗(µ̃) ≡ Z∗(µ̃)(Z∗(µ̃)′Z∗(µ̃))−1Z∗(µ̃)′ is well defined because λmin(µ̃) > ε1. Note first that, by
construction,

Z∗(µ̃)′x̃ = Z∗(µ̃)′x∗ − Z∗(µ̃)′NZ∗(µ̃)x
∗ = Z∗(µ̃)′x∗ − Z∗(µ̃)′Z∗(µ̃)(Z∗(µ̃)′Z∗(µ̃))−1Z∗(µ̃)′x∗ = 0me×1,

implying that the equality restrictions at Z∗(µ̃) are satisfied by x̃. Thus, we only need to show that the
inequalities in s∗m(µ̃) are satisfied with slack (after normalizing by its norm). To see this, simply note that

(s∗m(µ̃)/||s∗m(µ̃)||)′x̃ = (s∗m(µ̃)/||s∗m(µ̃)||)′(x̃− x∗) + (s∗m(µ̃)/||s∗m(µ̃)||)′x∗

> (s∗m(µ̃)/||s∗m(µ̃)||)′(x̃− x∗) + ε2

≥ −|s∗m(µ̃)/||s∗m(µ̃)||)′(x̃− x∗)|+ ε2

≥ −||(x̃− x∗)||+ ε2.

But
||x̃− x∗|| = (x∗′Z∗(µ̃)(Z∗(µ̃)′Z∗(µ̃))−1Z∗(µ̃)x∗)1/2

≤ sup
ω s.t. ||ω||=1

(ω(Z∗(µ̃)′Z∗(µ̃))−1ω)1/2||Z∗(µ̃)x∗||

= ||Z∗(µ̃)x∗||
√
λmin(µ̃)

≤ (
√
ε1ε2/2

√
ε1)

= ε2/2.
This implies that s∗m(µ̃)′x̃ > 0 for every m ∈ {1, 2, . . . ,mi}. This shows that for every µ̃ ∈ U(µ), x̃ ∈ R(µ̃).
To complete Step 1, notice that x† ≡ x̃/(x̃′Σ̃−1x̃) ∈ R(µ̃). By construction, x† is in the choice set of program
2.5 evaluated at µ̃.

Step 2 : Let the multivalued correspondence Γ(·) :M→ Rn be defined as the choice set of program (2.5).
We show continuity of this correspondence at µ by showing that it is both lower and upper hemicontinuous.
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To establish upper hemicontinuity, pick any sequence µN ∈M s.t. µN → µ and any converging sequence
xN ∈ Γ(µN ) s.t. xN → x∗. Consider any sign restriction s(µN ). By construction, s(µN )′xN ≥ 0. By
continuity of s(µn), we get in the limit s(µ)′x∗ ≥ 0. Similarly, (x∗)′Σ−1(x∗) = 1 and for any zero restriction
z(µ)′x∗ = 0. The set Γ(µ) is compact, so by Theorem 2 on p. 218 in Ok (2007), Γ(·) is upper hemicontinuous
at µ.

To establish lower hemicontinuity, consider any sequence µN ∈M s.t. µN → µ and any point x∗ ∈ Γ(µ).
Then, by Step 1, the elements of the sequence defined as

xN ≡ x̃(µN , µ)/(x̃(µN , µ)′Σ−1x̃(µN , µ))

belong to Γ(µN ). By continuity of Z∗(·) and Σ−1 at µ ∈ M (implied by Assumption 3) and using the
invertibility of the matrices (Z∗(µ̃N )′Z∗(µ̃N )) for N large enough ( implied by Assumption 2 ) we have
xN → x∗. By Proposition 4 on p. 224 in Ok (2007), Γ(µ) is lower hemicontinuous. By definition, it is
continuous at µ.

Step 3 : Let (Θ, ρ) ≡ (U(µ), ρ) be a metric space with Euclidean metric ρ(·). By Steps 1 and 2, the
choice set of the program in (2.5) is a non-empty, compact-valued, continuous correspondence at µ. By the
Maximum theorem, see p. 229 in Ok (2007), vk,i,j(·) is continuous at µ.

Additional Notation: Consider any sequence µN = (vecAN ′, vecΣN ′)′ such that

µN = µ+ hN/tN ,

where hN → h ∈ Rd, tN →∞ and such that µN belongs to the parameter spaceM for N large enough. By
Step 1 there exists N∗ large enough such that the choice set of the program in (2.5) at µN is non-empty for
every N ≥ N∗. Thus, vk,i,j(µN ) is well-defined for N large enough. Moreover, the continuity of the value
function established in Step 3 implies that we can assume that vk,i,j(µN ) 6= 0 for N large enough. In fact,
it is without loss of generality to assume that vk,i,j(µN ) > 0 for N large enough.

Let X∗(µ) denote the argmax of program (2.5) at µ. By Theorem 1—and using the fact that vk,i,j(µ) 6=
0—X∗(µ) has a finite number of elements. Assume then that the argmax has L elements and denote them
as x∗1(µ), x∗2(µ), . . . , x∗L(µ).

For each l ∈ {1, 2, . . . , L}, let r∗l (µ) denote the n × mzl matrix of all active restrictions at a solution
x∗l (µ). Likewise, let S∗l (µ) be the matrix of dimension n×msl that collects all slack restrictions at x∗l (µ).
Consequently, for each solution x∗l (µ) there are unique matrices r∗l (µ) and S∗l (µ) such that

r∗l (µ)′x∗l (µ) = 0mzl×1, S∗l (µ)′x∗l (µ) > 0msl×1.

Define
R∗(µ) ≡ {r∗1(µ), r∗2(µ), . . . , r∗l (µ)}.

Proof of differentiability: We establish the differentiability of the value function in two sub-steps.

Step 4: First, we show that

(A.6) max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h} ≤ lim inf

N→∞
tN (vk,i,j(µN )− vk,i,j(µ)).

Proof: Take any r∗l (µ) ∈ R∗(µ). By definition of r∗l (µ) all the columns of S(µ) that are not contained
in r∗l (µ) are slack (at µ). Consider then the candidate solution x∗+(µ, r∗l (µ)). This candidate solution is
continuous at µ (which follows from the formula in Lemma 1 and the fact that vk,i,j(µ, r∗l (µ)) = vk,i,j(µ) >
0). Therefore, for N large enough this candidate solution x∗+(µN , r∗l (µN )) is in the choice set of program
(2.5) at µN , which implies that

vk,i,j(µN , r∗l (µN )) ≤ vk,i,j(µN ).
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Hence, the inequality above implies that for any r∗l (µ) ∈ R∗(µ) we have that

tN (vk,i,j(µN , r∗l (µN ))− vk,i,j(µ, r∗l (µ))) ≤ tN (vk,i,j(µN )− vk,i,j(µ)).

Lemma 2 thus implies that for any r∗l (µ) ∈ R∗(µ),

v̇k,i,j(µ, r∗l (µ))′h ≤ lim inf
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)),

which establishes equation (A.6).

Step 5: Now we show that

(A.7) lim sup
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)) ≤ max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h}.

Proof: We prove the statement above by contradiction. So, suppose that (A.7) does not hold. Then, there
exists ε0 > 0 and a subsequence µNk such that for every r∗l (µ) ∈ R∗(µ),

(A.8) v̇k,i,j(µ, r∗l (µ))′h+ ε0 ≤ tN (vk,i,j(µNk )− vk,i,j(µ)).

We will show that assuming the existence of ε0 > 0 and a subsequence µNk will lead to a contradiction.

Additional Notation: Let x∗Nk be any element in the argmax of program (2.5) at µNk . Let r
∗
Nk

(µNk ) be
the matrix that collects all active restrictions at x∗Nk and let S∗Nk (µNk ) be the matrix that collects all of
the sign restrictions that are slack at x∗Nk ; i.e, S

∗
Nk

(µNk )′x∗Nk > 0. Let

R+(µ) ≡ {r ∈ R(µ) | vk,i,j(µ; r(µ)) > 0}.

Partition the set R+(µ) into the following four disjoint sets:

i) R∗(µ),

ii) The restrictions r(µ) ∈ R+(µ)/R∗(µ) for which x+(µ; r(µ)) belongs to X∗(µ),

iii) The restrictions r(µ) ∈ R+(µ) that do not fall in neither i) nor ii) and for which some sign restriction
not included in r(µ) is violated,

iv) The restrictions r(µ) ∈ R(µ) that do not fall in i), ii), iii) for which x+(µ, r(µ)) is feasible but
vk,i,j(µ, r(µ)) < vk,i,j(µ).

Proof of A.7): Note that the restrictions of Type i) cannot be satisfied by x∗Nk infinitely often. In other
words, there is no l = 1, . . . L such that

r∗Nk (µNk ) = r∗l (µNk ), and S∗Nk (µNk ) = S∗l (µNk )

for infinitely many values of k. If this were the case, there would be a further subsequence NKT for which
vk,i,j(µNKT ) = vk,i,j(µNKT , rl(µNKT )). Thus, equation (A.8) would contradict the differentiability of
vk,i,j(µ, rl(µ)).

Restrictions of Type iii) cannot be satisfied infinitely often by x∗Nk
. This follows from the fact that if

r∗Nk
(µNK ) were equal to some r(µNK ) for r(µ) of type iii) infinitely often, then we could always find some

large k for which x∗Nk is the form x+(µNk , r(µNK )). Such candidate solution will eventually violate a sign
restriction, contradicting the fact that x∗Nk is in fact a solution.

Restrictions of Type iv) cannot be satisfied infinitely often by x∗Nk . If this were the case, then we could
always find some large k for which
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v̇k,i,j(µ, r∗l (µ))′h+ ε0 ≤ tNk (vk,i,j(µNk )− vk,i,j(µ))

= tNk (vk,i,j(µNk , rl(µNk ))− vk,i,j(µ))

= tNk (vk,i,j(µNk , rl(µNk ))− vk,i,j(µ, rl(µ)))

+ tNk (vk,i,j(µNk , rl(µ))− vk,i,j(µ))
(where rl(·) is some set of restrictions of type iv)). But the fact that (vk,i,j(µNk ; rl(µ)) − vk,i,j(µ) < 0)
contradicts the definition of the subsequence µNk .

Finally, we show that if r is a restriction of Type ii) it cannot be the case that

r∗µNk
(µNp ) = r(µNp )

infinitely often. To establish this claim, suppose that there is a restriction r of Type ii) such that

r(µNp )′x∗(µNp ) = 0

infinitely often. This means we can construct a further subsequence µNpq for which (by Lemma 1)

vk,i,j(µNpq ) = vk,i,j(µNpq , r(µNpq )).

Therefore, by equation (A.8) we must have that for every r∗l (µ) ∈ R∗(µ),

v̇k,i,j(µ, r∗l (µ))′h+ ε0 ≤ tNpq (vk,i,j(µNpq , r(µNpq ))− vk,i,j(µ))

= tNpq (vk,i,j(µNpq , r(µNpq ))− vk,i,j(µ, r(µ)))

+ tNpq (vk,i,j(µ, r(µ))− vk,i,j(µ))

= tNpq (vk,i,j(µNpq , r(µNppq ))− vk,i,j(µ, r(µ))),

where the last line follows from the fact that r(µ) is of Type ii) and, hence, leads to a candidate solution
x+(µ; r(µ)) that equals x∗l (µ) for some l, which we will assume (without loss of generality) to be equal to 1.
The differentiability result in Lemma 2 implies that for every l = 1, . . . , L,

v̇k,i,j(µ; r∗l (µ))′h+ ε0 ≤ v̇k,i,j(µ, r(µ))′h.

We show that this last inequality leads to a contradiction as we must have

(A.9) v̇k,i,j(µ, r∗1(µ))′h = v̇k,i,j(µ; r(µ))′h.

To see this, note first that r∗1(µ) must contain all the columns of r(µ) as

r(µ)′x∗1(µ) = 0,

and, by definition, r∗1(µ) contains all the constraints that are active at x∗1(µ). Thus, we can write r∗1(µ) as

r∗1(µ) = [r(µ), r̃(µ)],

where r(µ) and r̃(µ) are linearly independent. Our formula for v̇k,i,j in Lemma 2 implies that (A.9) will
hold if the Lagrange multipliers corresponding to the constraints in r̃(µ) are zero. To see that this is indeed
the case, note that by the argument used in the proof of Lemma 2, the Karush-Kuhn-Tucker conditions for
the program that only imposes r(µ) as equality conditions (along with the ellipsoid constraint) imply that

C′k(A)ei = vk,i,j(µ; r(µ))Σ−1x+(µ; r(µ)) + r(µ)w1.
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The analogous conditions for the program that imposes r∗1(µ) as constraints imply that

C′k(A)ei = vk,i,j(µ; r∗1(µ))Σ−1x+(µ; r∗1(µ)) + r∗1(µ)w∗1 .

Therefore—since by assumption x+(µ; r∗1(µ)) = x+(µ; r(µ))—it has to be the case that

r(µ)w1 − r∗1(µ)w∗1 = 0n×1.

Partitioning w∗1 = [w∗1,1
′, w∗′1,2]′ according to r(µ) = [r(µ), r̃(µ)], we have that

r(µ)(w1 − w∗1,1) + r̃(µ)w∗1,2 = 0n×1.

Assumption 2 implies that the latter equality holds if and only if w1 = w∗1,1 and w∗1,2 = 0. Therefore we
conclude that equation (A.9) must holds. This leads to a contradiction as ε0 > 0 and

v̇k,i,j(µ; r∗1(µ))′h+ ε0 ≤ v̇k,i,j(µ; r∗1(µ))′h.

Summary of Step 4: Step 4.1 showed that

max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ; r∗l (µ))′h} ≤ lim inf

N→∞
tN (vk,i,j(µN )− vk,i,j(µ)).

Step 4.2 showed that

lim sup
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)) ≤ max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h}.

We conclude that

lim
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)) = max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h}.

A.5. Proof of Theorem 3 Part a)

Let P denote the data generating process. For notational simplicity we write µ instead of µ(P ) and Ω
instead of Ω(P ) whenever convenient. Note first that

(A.10) P

(
λ ∈
[
vk,i,j(µ̂T )− z1−α/2 σ̂k,i,j;T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂k,i,j;T /

√
T

])
is bounded from below by

P

(√
T (vk,i,j(µ̂T )− vk,i,j(µ)) ≤ z1−α/2 σ̂k,i,j;T and − z1−α/2σ̂k,i,j;T ≤

√
T (vk,i,j(µ̂T )− vk,i,j(µ))

)
,

which is itself bounded from below by

P

(√
T (vk,i,j(µ̂T )−vk,i,j(µ)) ≤ z1−α/2σ̂k,i,j;T and −z1−α/2σ̂k,i,j;T ≤

√
T (vk,i,j(µ̂T )−vk,i,j(µ)), and ||

√
T (µ̂T−µ)|| ≤Mε

)
,

where Mε is such that
P

(
||ζ(P )|| > Mε

)
≤ ε.

By Theorem 2, both vk,i,j(·) and vk,i,j(µ) are directionally differentiable function with directional derivatives
denoted by v̇k,i,j;µ(·), v̇k,i,j;µ(·). The directional differentiability implies that for any δ > 0 there is T large
enough such that for any h ∈ Rd such that ||h|| ≤Mε,

−δ ≤
√
T (vk,i,j(µ+ h/

√
T )− vk,i,j(µ))− v̇k,i,j;µ(h) ≤ δ

and
−δ ≤

√
T (vk,i,j(µ+ h/

√
T )− vk,i,j(µ))− v̇k,i,j;µ(h) ≤ δ.
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Therefore, for T large enough

inf
λ∈IR

k,i,j
(µ(P ))

P

(
λ ∈
[
vk,i,j(µ̂T )− z1−α/2 σ̂k,i,j;T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂k,i,j;T /

√
T

])
is bounded from below by

P

(
δ + v̇k,i,j;µ(

√
T (µ̂T − µ)) ≤ z1−α/2 σ̂k,i,j;T and

−z1−α/2σ̂k,i,j;T ≤ v̇k,i,j;µ(
√
T (µ̂T − µ))− δ, and ||

√
T (µ̂T − µ)|| ≤Mε

)
,

which, by Assumption 4 (and using the continuity of the directional derivative), converges in distribution to

P

(
δ + v̇k,i,j;µ(ζ(P )) ≤ z1−α/2 σ and

−z1−α/2σ ≤ v̇k,i,j;µ((ζ(P ))− δ, and ||ζ(P )|| ≤Mε

)
,

where σ is the probability limit of σ̂k,i,j;T ,

σ ≡ max
r∈R(µ)

[
v̇k,i,j(µ; r)′Ωv̇k,i,j(µ; r)

]
.

Consequently, for every δ > 0,

lim inf
T→∞

inf
λ∈IR

k,i,j
(µ(P ))

P

(
λ ∈
[
vk,i,j(µ̂T )− z1−α/2 σ̂k,i,j;T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂k,i,j;T /

√
T

])
is larger than or equal

1− P
(
v̇k,i,j;µ(ζ(P )) > z1−α/2 σ − δ

)
− P
(
v̇k,i,j;µ(ζ(P )) < −z1−α/2 σ + δ

)
−P
(
||ζ(P )|| > Mε

)
.

Take some x ∈ X∗(µ) for which σ(x) ≡ v̇k,i,j(µ; r(µ;x))′Ωv̇k,i,j(µ; r(µ;x)) > 0 (one such x must exist by
the assumption of this theorem). The fact that ζ(P ) is symmetric and using our formula for the directional
derivative of vk,i,j we have that

P

(
v̇k,i,j;µ(ζ(P )) > z1−α/2 σ − δ

)
≤ P

(
v̇k,i,j(µ; r(µ;x))′ζ(P ) > z1−α/2σ − δ

)
≤ P

(
N(0, 1) > z1−α/2

σ

σ(x)
−

δ

σ(x)

)
,

≤ P
(
N(0, 1) > z1−α/2 −

δ

σ(x)

)
,

for any δ > 0 (since σ ≥ σ(x)).

Now, take some x ∈ X∗(µ) for which σ(x) ≡ v̇k,i,j(µ; r(µ;x))′Ωv̇k,i,j(µ; r(µ;x)) > 0. Note that

P

(
v̇k,i,j;µ(ζ(P )) < −z1−α/2 + δ σ

)
≤ P

(
v̇k,i,j(µ; r(µ, x))′ζ(P ) < −z1−α/2σ + δ

)
≤ P

(
N(0, 1) < −z1−α/2

σ

σ(x)
+

δ

σ(x)

)
,

≤ P
(
N(0, 1) < −z1−α/2 +

δ

σ(x)

)
,

for any δ > 0 (since σ > σ(x)). We conclude that for any ε > 0 and δ > 0
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lim inf
T→∞

inf
λ∈IR

k,i,j
(µ(P ))

P

(
λ ∈
[
vk,i,j(µ̂T )− z1−α/2 σ̂k,i,j;T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂k,i,j;T /

√
T

])
is bounded from below by

Φ
(
z1−α/2 −

δ

σ(x)

)
− Φ

(
−z1−α/2 +

δ

σ(x)

)
− ε,

where Φ(·) is the standard normal c.d.f. Since ε > 0, δ > 0 are arbitrary and Φ(·) is continuous, the desired
result follows.

A.6. Proof of Theorem 3 Part b)

Proof: We would like to show that for every ε > 0, η > 0 there is T ∗(ε, η) such that for T ≥ T ∗(ε, η) we
have that

P (RBC(Y1, . . . , YT ) < 1− α− ε) < η.

We divide the proof into 5 steps.
Step 1 (Definitions of Mε,η , δε): Let ζ be a Nd(0,Ω(P )) random vector. For given ε > 0, η > 0 define

Mε,η ∈ R as the scalar such that
P(||ζ|| > Mε,η) < min{ε/3, η/4}.

Let Φ(·) denote the standard normal c.d.f. Define δε > 0 to be any scalar such that

|Φ(z1−α/2 − δε/σ(µ))− Φ(−z1−α/2 + δε/σ(µ))− (1− α)| < ε/3.

Such a scalar exists by the continuity of Φ(·) and the fact that σ(µ) and σ(µ) are positive.
Step 2 (Definitions of AT (ε), BT (ε), CT (ε)). Let

Y T ≡ (Y1, . . . , YT )

denote the data. In a slight abuse of notation, let σ̂T abbreviate σ̂k,i,j and let σ denote the probability limit
of σ̂T . Define the events:

AT (ε, η) ≡
{
Y T

∣∣∣ ||√T (µ̂T − µ)|| > Mε,η

}
,

BT (ε) ≡
{
Y T

∣∣∣ sup
B∈B(Rd)

|P ∗µ
(√

T (µ∗ − µ̂T ) ∈ B | Y T
)
− P (ζ ∈ B) | >

ε

3

}
,

CT (ε) ≡
{
Y T

∣∣∣ |σ̂ − σ| > δε

2z1−α/2

}
.

We will show that if the Robust Bayes Credibility of our delta-method interval falls below 1−α− ε then one
of the events above occurs a fortiori. We will then argue that our assumptions imply that the probability
of each of these events becomes arbitrarily small for large T (implying the event in which the Robust Bayes
Credibility is below 1− α− ε happens with an arbitrarily small probability).

Note that the CLT for µ̂T (Assumption 4) implies that for any ε > 0 and any η > 0

(A.11) P (AT (ε, η))→ P(||ζ|| > Mε,η).

The Bernstein von-Mises Theorem for µ∗ (Assumption 5) implies that for any ε > 0

(A.12) P (BT (ε))→ 0.
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Finally, the definition of probability limit implies that

(A.13) P (CT (ε))→ 0.

Therefore, for any ε > 0, η > 0 there exists T1(ε, η) such that for any T ≥ T1(ε, η)

(A.14) |P (AT (ε, η))− P (||ζ|| > Mε,η)| < η/4, |P (BT (ε))| < η/4, P (CT (ε)) < η/4.

Step 3 (First order approximations of the bounds of the identified set). Let µ denote the true parameter
and define Z∗T ≡

√
T (µ∗ − µ̂T ) and ZT ≡

√
T (µ̂T − µ). Let v(·) abbreviate vk,i,j(·) and, likewise, let v(·)

abbreviate vk,i,j(·). Note that
√
T (v(µ∗)− v(µ̂T )) =

√
T (v(µ+ Z∗T /

√
T + ZT /

√
T )− v(µ))−

√
T (v(µ+ ZT /

√
T )− v(µ)).

The differentiability of v(·) at µ (which follows from Theorem 2 and the fact that X∗(µ) is a singleton)
implies that whenever ||Z∗T || ≤Mε and ||ZT || ≤Mε there is T2(ε, η) such that for T ≥ T2(ε, η),

|
√
T (v(µ∗)− v(µ̂T ))− v̇µ(Z∗T + ZT )− v̇µ(ZT )| = |

√
T (v(µ∗)− v(µ̂T ))− v̇µ(Z∗T )| < δε/2.

Analogously, we can find T3(ε, η) such that for T ≥ T3(ε, η) we have

|
√
T (v(µ∗)− v(µ̂T ))− v̇µ(Z∗T )| < δε/2.

Step 4 (Lower bound on the Robust Bayesian Credibility of a set). Define the posterior probability that
the bounds of the identified set are contained in our delta-method interval as

c(Y T ) ≡ P ∗µ
(

[v(µ∗), v(µ∗)] ⊆
[
v(µ̂T )− z1−α/2 σ̂/

√
T , v(µ̂T ) + z1−α/2 σ̂/

√
T

]
|Y T
)
.

Note that for every data realization
c(Y T ) ≤ RBC(Y T ),

which follows from the fact that for any (A,B) we have that λ(A,B) ∈ [v(µ), v(µ)]. Therefore for any ε > 0

(A.15) P (RBC(Y T ) < 1− α− ε) ≤ P (c(Y T ) < 1− α− ε)

Thus, to establish Theorem 4 it suffices to show that for any ε > 0

lim
T→∞

P (c(Y T ) < 1− α− ε) = 0.

We establish such a result in the following step.
Step 5: We now show that for any ε > 0, η > 0 there is T large enough such that

P (c(Y T ) < 1− α− ε) ≤ P (AT (ε, η) ∪BT (ε) ∪ CT (ε)),

or equivalently, that
P (AcT (ε) ∩BcT (ε) ∩ CcT (ε)) ≤ P (c(Y T ) ≥ 1− α− ε)

for T large enough. We start by re-writing c(Y T ) as

P ∗µ

(
− z1−α/2σ̂ ≤

√
T (v(µ∗)− v(µ̂T )), and

√
T (v(µ∗)− v(µ̂T )) ≤ z1−α/2σ̂|Y T

)
,

and noting that

(A.16) c(Y T ) ≥

P ∗µ

(
−z1−α/2σ̂ ≤

√
T (v(µ∗)−v(µ̂T )), and

√
T (v(µ∗)−v(µ̂T )) ≤ z1−α/2σ̂, and ||

√
T (µ∗−µ̂T )|| ≤Mε,η |Y T

)
.
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Take T ∗(ε, η) = max{T1(ε, η), T2(ε, η), T3(ε, η)}. From Equation (A.16) and Step 2 it follows that

Y T ∈ AcT (ε, η) =⇒

(A.17) c(Y T ) ≥ P ∗µ
(
−z1−α/2σ̂ ≤ v̇µ(Z∗T )−δε/2, and v̇µ(Z∗T )+δε/2 ≤ z1−α/2σ̂, and ||Z∗T || ≤Mε,η |Y T

)
for T ≥ T ∗. In addition,

Y T ∈ CcT (ε)

implies that the right-hand side of equation (A.17) is larger than or equal

P ∗µ

(
− z1−α/2σ ≤ v̇µ(Z∗T )− δε, and v̇µ(Z∗T ) + δε ≤ z1−α/2σ̂, and ||Z∗T || ≤Mε,η |Y T

)
.

This means that for T ≥ T ∗(ε, η)
Y T ∈ AcT (ε) ∩ CcT (ε) =⇒

(A.18) c(Y T ) ≥ P ∗µ
(
− z1−α/2σ ≤ v̇µ(Z∗T )− δε, and v̇µ(Z∗T ) + δε ≤ z1−α/2σ̂, and ||Z∗T || ≤Mε,η |Y T

)
.

Define the set

B =
{
z ∈ Rd

∣∣∣ − z1−α/2σ ≤ v̇µ(z)− δε, and v̇µ(z) + δε ≤ z1−α/2σ, and ||z|| ≤Mε,η

}
.

By definition, v̇µ(·) and v̇µ(·) are linear and thus measurable functions. This means that B is a Borel Set
(as it is the inverse image of a Borel subset on the real line under a measurable function). Consequently,

Y T ∈ AcT (ε, η) ∩BcT (ε) ∩ CcT (ε)

implies that
C(Y T ) ≥ P

(
− z1−α/2σ ≤ v̇µ(ζ)− δε, and v̇µ(ζ) + δε ≤ z1−α/2σ, and ||ζ|| ≤Mε,η

)
− ε/3

= P
(
− v̇µ(ζ) ≤ z1−α/2σ − δε, and − z1−α/2σ + δε ≤ −v̇µ(ζ), and ||ζ|| ≤Mε,η

)
− ε/3.

Note further that because the distribution of ζ is the same as that of −ζ and because v̇µ(·), v̇µ(·) are linear
functions (by definition of derivative) we have that

C(Y T ) ≥ P
(
v̇µ(ζ) ≤ z1−α/2σ − δε, and − z1−α/2σ + δε ≤ v̇µ(ζ), and ||ζ|| ≤Mε

)
− ε/3

≥ 1− P
(
v̇µ(ζ) > z1−α/2σ − δε

)
− P
(
− z1−α/2σ + δε > v̇µ(ζ)

)
− 2ε/3

= 1− P
(
N(0, 1) > z1−α/2

σ

σ(µ)
−

δε

σ(µ)

)
− P
(
− z1−α/2

σ

σ(µ)
+

δε

σ(µ)
> N(0, 1)

)
− 2ε/3

≥ 1− P
(
N(0, 1) > z1−α/2 −

δε

σ(µ)

)
− P
(
− z1−α/2 +

δε

σ(µ)
> N(0, 1)

)
− 2ε/3

≥ Φ
(
z1−α/2 −

δε

σ(µ)

)
− Φ
(
− z1−α/2 +

δε

σ(µ)

)
− 2ε/3

≥ 1− α− ε.

Thus, we have shown that if T ≥ T ∗(ε, η), then

Y T ∈ AcT (ε, η) ∩BcT (ε) ∩ CcT (ε) =⇒ c(Y T ) ≥ 1− α− ε.

This means that if T ≥ T ∗(ε, η), then
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P

(
c(Y T ) < 1− α− ε

)
≤ P (AT (ε, η)) + P (BT (ε)) + P (CT (ε))

≤ |P (AT (ε))− P(||ζ|| > Mε,η)|+ P(||ζ|| > Mε,η)

+ P (BT (ε)) + P (CT (ε))

≤ 4(η/4) (by equation (A.14)) .
Therefore, for any ε > 0, η > 0 there is T ∗(ε, η) such that

P (RBC(Y T ) < 1− α− ε) ≤ P (c(Y T ) < 1− α− ε) < η.

A.7. Implementation details

A.7.1. Bonferroni confidence set

This section describes the implementation of the Bonferroni-type method proposed by Granziera et al.
(2017). The following algorithm is a variation of the algorithm outlined on p.17 in Granziera et al. (2017).
There is one minor difference between the algorithms. To avoid dealing with degenerate D̂, we add Step 3.c
instead of implicitly adjusting the criterion function as proposed in Section 4.2 of Granziera et al. (2017). The
rate of the sequence σT guaranties that the additional noise σT εb does not affect the asymptotic distribution
of G (ξg).

1. Generate NB draws
{
µ∗b

}NB
b=1
∼ N

(
µ̂T , Ω̂T

)
.

2. Generate NG grid points {xg}
Ng
g=1 on a unit d−sphere distributed uniformly using the algorithm from

Uhlig (2005).

3. For every grid point xg , we implement the following statistical test (of size 1 − α/2) of whether
B1g = Σ̂1/2

T xg satisfies all identification restrictions. This is done by following steps a) to g) below.

(a) Compute estimated residuals21,

ξg =
(
S′ (µ̂T ) , Z′ (µ̂T )

)′
B1g .

(b) Compute re-centered bootstrap residuals
{
ξ∗g;b

}NB
b=1

,

ξ̃?g;b =
(
S′
(
µ∗b
)
, Z′
(
µ∗b
))′

Σ∗b
1/2xg − ξg .

(c) Add independent normally distributed noise with εb ∼ N (0, I) and σT = 10−6/
√
T ln (lnT ),

ξ∗g;b = ξ̃?g;b + σT εb.

(d) Compute standard errors for
{
ξ∗g;b

}NB
b=1

. The diagonal matrix D̂1/2 has the corresponding
standard errors on the diagonal.

(e) Select binding inequities as inequalities corresponding to the components ` of ξg such that

e′`D̂
−1/2ξg ≤ κT = 1.96 ln (lnT ) .

(f) Compute the criterion function G (ξg) and
{
G
(
ξ∗g;b

)}NB
b=1

which includes only the equalities

21We only compute matrices (S′ (µ̂T ) , Z′ (µ̂T ))′
√

Σ̂T and
(
S′
(
µ∗b

)
, Z′
(
µ∗b

))′√
Σ∗
b
once to speed up

the costly matrix multiplication.
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and the binding inequalities, where

G
(
ξ∗g;b
)

=
mz∑
`=1

(
e′`D̂

−1/2ξ∗g;b
)2

+
ms+ms∑
`=mz+1

(
e′`D̂

−1/2ξ∗g;b
)2

1
{
e′`D̂

−1/2ξg ≤ κT
}

(A.19)

(g) Grid point xg passes the test if G (ξg) is less that 1− α/2 sample quantile of
{
G
(
ξ∗g;b

)}NB
b=1

.

4. If xg passes the test in Step 3, compute λ(g)
k,i,j

and λ̄
(g)
k,i,j

as α/4 and 1 − α/4 sample quantiles of{
e′iCk

(
A∗b

)√
Σ∗
b
xg
}NB
b=1

correspondingly. Otherwise set λ(g)
k,i,j

= +∞ and λ̄(g)
k,i,j

= −∞.

5. Report

CSGSMT (1− α) =
[

min
g=1,NG

λ
(g)
k,i,j

, max
g=1,NG

λ̄
(g)
k,i,j

]
.

Our implementation corresponds to a generalized version of the criterion function considered in Section 6
of Granziera et al. (2017). This generalized criterion function can potentially be applied to a combination
of zero and sign restrictions. In our baseline empirical application, however, the acceptance rate of Step 3
is so low that we could not find a single point out of 10000 grid points that would pass the test. For this
reason, we report the results for the alternative identification scheme with the zero restriction on the FFR
being replaced by a negative sign restriction.

The number of grid points that pass Step 4 of the algorithm depends crucially on the number of the
identifying restrictions imposed. In our experiment, every additional sign restriction reduces the acceptance
rate almost by half and, correspondingly, requires twice more grid points and computational time to achieve
the same level of accuracy. For the UMP example with 4 sign restrictions the acceptance rate is 9.1%.

A.7.2. Joint Confidence Sets

To implement Inoue and Kilian (2013)’s algorithm, we first sample 10,000 joint draws from the posterior
of reduced-form parameters and structural coefficients that satisfy all identification restriction. We use those
draws to compute 10,000 structural impulse response function. Second, we sample 20,000 draws of reduced-
form parameters to compute the marginal posterior density for each structural response. Third, we compute
a joint 68% credible set by keeping all of structural responses which have marginal density higher than the
lowest 32%. The second step is computationally costly. In our implementation it takes 2.5 hours when using
50 parallel workers in Matlab.
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