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We study the classical problem of predicting an outcome variable, Y ,
using a linear combination of a d-dimensional covariate vector, X. We are
interested in linear predictors whose coefficients solve:

inf
β∈Rd

(
EPn

[∣∣Y −X
⊤
β
∣∣r]

)1/r
+ δ ρ (β) ,

where δ > 0 is a regularization parameter, ρ : Rd → R+ is a convex penalty
function, Pn is the empirical distribution of the data, and r ≥ 1. Our main
contribution is a new bound on the out-of-sample prediction error of such
estimators.

The new bound is obtained by combining three new sets of results. First,
we provide conditions under which linear predictors based on these estima-
tors solve a distributionally robust optimization problem: they minimize the
worst-case prediction error over distributions that are close to each other in a
type of max-sliced Wasserstein metric. Second, we provide a detailed finite-
sample and asymptotic analysis of the statistical properties of the balls of dis-
tributions over which the worst-case prediction error is analyzed. Third, we
present an oracle recommendation for the choice of regularization parameter,
δ, that guarantees good out-of-sample prediction error.

1. Introduction. The extent to which prediction algorithms can perform well not just
on training data, but also on new, unseen, testing inputs is a central concern in machine
learning. In fact, reducing a predictor’s testing error—or equivalently, improving its “out-of-
sample” performance or “generalization error”—possibly at the expense of increased training
error, is a typical informal motivation for introducing regularization strategies in statistical
estimation; see, for example, [35, Chapter 7] and [40, Chapter 7]. More generally, the study
of issues related to problems in which training and testing environments differ from one
another is the subject of several recent, rapidly growing areas of research at the intersection
of machine learning and statistics: transfer learning [44], distributional shifts [1, 31, 71],
domain adaptation [7, 52], adversarial attacks [41, 46], learning under biased sampling [65]
and cross-domain transfer performance [3] are some relevant examples.

In this paper, we study the classical problem of predicting an outcome variable, Y , using
a linear combination of a d-dimensional covariate vector, X. We focus on linear predictors
whose coefficients, β̂, solve the problem:

(1) arg inf
β∈Rd

(
EPn

[∣∣Y −X⊤β
∣∣r]
)1/r

+ δ ρ(β),
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where δ > 0 is a regularization parameter, ρ : Rd → R+ is a convex penalty function, Pn is
the empirical distribution of the data, and r ≥ 1. We assume that both ρ and r have been
determined by the statistician, and make no attempt to provide normative statements re-
garding their selection. The square-root LASSO (henceforth,

√
LASSO) [5], the square-root

group LASSO [18], the square-root sorted ℓ1 penalized estimator (SLOPE) [70], and the ℓ1-
penalized least absolute deviation estimator [76] provide examples of estimators obtained by
solving (1).

We are interested in studying the out-of-sample prediction error associated to such estima-
tors; namely

(2) EQ

[∣∣Y −X⊤β̂
∣∣r].

The expectation above is computed by fixing the estimated β̂, and then drawing new covari-
ates and outcomes according to some joint distribution Q. The distribution Q is similar, but
not necessarily equal to, the true data generating process, P, or the empirical distribution of
the data, Pn.

Our main result is the following upper bound on the out-of-sample prediction error (see
(11) and Theorem 6 for a more formal statement). If δ is chosen appropriately, then, with
high probability, the objective function in (1) constitutes, up to some adjustment terms, an
upper bound for the out-of-sample prediction error evaluated at any β and Q:

EQ

[∣∣Y −X⊤β
∣∣r]1/r ≤ EPn

[∣∣Y −X⊤β
∣∣r]1/r + δ

(
1 + ρ (β)) + Ŵr(P,Q)(1 + ρ (β)),

(3)

where Ŵr denotes a type of max-sliced Wasserstein metric. Consequently, linear predictors
whose coefficients solve (1), for an appropriately chosen δ, have good out-of-sample perfor-
mance at the true, unknown distribution of the data P, and, also, at testing distributions Q

that are close to P in terms of Ŵr .
We present a formal definition of this metric in (4) below, and explain how distributions

that are close in this metric are required to have similar prediction errors (in a sense we make
precise). The proof of the above is based on three intermediate results, which bring together
ideas related to distributionally robust optimization (DRO), finite sample analysis of the max-
sliced Wasserstein metric, and empirical process theory. We believe that the three steps used
to prove (3) provide results that are interesting in their own right, and in what follows, we
discuss each of these steps in more detail.

First, we show that estimators constructed using (1) are equivalent to those that solve a
DRO problem based on a Ŵr-ball around Pn (Theorem 1, Section 2). The DRO representa-
tion naturally yields finite-sample bounds for (2) in terms of (1), provided that distributions
Q are close to Pn in terms of our suggested metric (Section 2.1 provides examples of dis-
tributions contained in our balls). Thus, our first result provides theoretical support for the
claim that predictors based on estimators obtained via (1) (such as the

√
LASSO and related

estimators) have good out-of-sample performance.
Second, we provide a detailed statistical analysis of the balls of distributions based on our

suggested metric. More precisely, we determine the required size of a ball centered on Pn

to guarantee that it contains P with high probability. We present both finite-sample results
(Theorem 2 and Theorem 3 in Section 3) and large-sample approximations (Theorem 4 and 5
in Section 4). Our analysis suggests that our balls are statistically larger than those based on
the standard Wasserstein metric (Remark 2). Because the balls we consider are statistically
larger, their radii can shrink to zero faster than order n−1/d (the usual rates for Wasserstein
balls), and still contain P (see Figure 1).
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Fig 1: ρ-max-sliced Wasserstein ball of radius n−1/2 (blue) vs. d-dimensional Wasserstein
ball of radius n−1/2 (yellow) and n−1/d (green). The measure P∗ (orange) is the optimal
perturbation in the DRO formulation.

Third, we use the DRO representation of (1) and the statistical analysis of our max-sliced
Wasserstein balls to i) derive oracle recommendations for the penalization parameter δ (Sec-
tion 5) that guarantee good out-of-sample prediction error (Theorem 6 in Section 5.1); and ii)
present a test statistic to rank the out-of-sample performance of two different linear estimators
(Section 5.4). In Section 6 we present a small-scale simulation to illustrate the performance
of predictions based on the

√
LASSO but using our recommended parameter δ.

None of our results rely on sparsity assumptions about the true data generating process;
thus, they broaden the scope of use of the

√
LASSO and related estimators in prediction

problems.
We now provide an overview of the technical details of our main results.

1.1. Main Contributions.

1.1.1. DRO formulation. Our first result shows that linear predictors whose coefficients
solve (1) minimize the worst-case, out-of-sample prediction error attained over a ball of dis-
tributions centered around Pn. This ball is defined by what we call the ρ-max-sliced Wasser-

stein (ρ-MSW) metric:1

(4) Ŵr,ρ,σ(P, P̃) := sup
γ∈Rd

(
inf

π∈Π(P,P̃)

1

σ+ ρ(γ)

(
Eπ

[∣∣(Y −X⊤γ)− (Ỹ − X̃⊤γ)
∣∣r]
)1/r)

.

1Sliced Wasserstein distances [16, 61]—i.e., distances between probability distributions that consider the aver-
age or maximum of standard Wasserstein distances between one-dimensional projections—have been the subject
of recent research in statistics and machine learning; see, for example, [43], [56] and the references therein. As we
discuss later in the paper, the max-sliced Wasserstein distance has been studied recently in [4, 51, 57]. Its use in
the analysis of out-of-sample prediction error of the

√
LASSO and related estimators yields a hitherto unexplored

connection to the field of statistical optimal transport, which we hope to be attractive from a methodological point
of view.
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Here, for arbitrary distributions P and P̃, the set Π(P, P̃) denotes the collection of probability
distributions over random vectors ((X⊤, Y ), (X̃⊤, Ỹ )), with marginal distributions (P, P̃)

(that is, the set Π(P, P̃) is the collection of couplings of P and P̃). We assume r,σ ≥ 1, refer
to r as the Wasserstein exponent, and take σ to be an auxiliary hyperparameter.2

Intuitively, P and P̃ are close in the ρ-MSW metric, with Wasserstein exponent r, if for
any γ there exists a coupling of P and P̃ that makes the r-th norm of the difference of their

prediction errors small, relative to ρ(γ).3

Formally, Theorem 1 in Section 2 shows that β̂ solves (1) if and only if it solves the
distributionally robust optimization problem

(5) inf
β∈Rd

(
sup

P̃∈Br,ρ,σ

δ (Pn)

E
P̃

[∣∣Y −X⊤β
∣∣r]
)
,

where Br,ρ,σ
δ (Pn) is defined as the ball centered around the empirical distribution of the

data, Pn, collecting all the distributions P̃ for which Ŵr,ρ,σ(Pn, P̃) is smaller than δ. By
construction, the minimax problem (5) provides robustness in situations where i) the trained
procedure will be evaluated on test data from a distribution P̃ that is close to that of the
training data, P, but may be different [7]; ii) where there are covariate shifts [2, 20, 60, 62,
67, 71, 72, 78]; or iii) when there is an adversarial attack [41, 46].

It is useful to compare the ρ-MSW metric to the d-dimensional Wasserstein metric with
cost ‖ · ‖, defined by

(6) Wr(P, P̃) := inf
π∈Π(P,P̃)

(
Eπ

[
‖(X̃⊤, Ỹ )− (X⊤, Y )‖r

])1/r
,

where ‖ · ‖ is an arbitrary metric in Rd+1. Remark 2 in Section 2 shows that for a large class
of penalty functions ρ, the balls based on (4) will typically be larger than those based on (6).

It is also useful to note that our ρ-MSW metric is a slight generalization of the max-sliced

Wasserstein metric (MSW), first considered in [28, 43, 57, 58]. Broadly speaking, the MSW
distance over probability distributions P and P̃ on Rd+1 is defined as

(7) Wr(P, P̃) := sup
γ̃∈Rd+1:‖γ̃‖2=1

Wr(γ̃∗P , γ̃∗P̃) ,

where Wr is the one-dimensional Wasserstein metric, and γ̃∗P denotes the pushforward prob-
ability of P with respect to the linear map z ∈ Rd+1 7→ z⊤γ̃ ∈ R. The supremum is defined
over all linear, one-dimensional projections generated by the vectors in the unit sphere. We
provide further details about the MSW metric in the discussion following Equation (26).

To further illustrate the similarities between the MSW and our ρ-MSW metric, it is con-
venient to assume, for the moment, that ρ(·) is a norm on Rd. For an arbitrary scalar σ > 0,
define the function ‖ · ‖ρ,σ on Rd+1 via ‖γ̃‖ρ,σ = σ|y|+ ρ(γ), where γ̃ = (γ, y), γ ∈Rd and
y ∈ R. Note that ‖γ̃‖ρ,σ is a norm. Then, Lemma B.1 in the Supplementary Material [54]
shows that our ρ-MSW metric can be written as

Ŵr,ρ,σ(P, P̃) = sup
γ̃∈Rd+1:‖γ̃‖ρ,σ=1

Wr(γ̃∗P , γ̃∗P̃) .

2For all the results in the paper, with the exception of Theorem 7, the hyperparameter σ can be treated as an
arbitrary positive constant (and in fact, without any loss of generality, it can be chosen to equal one). In Section 3
we explain that introducing the hyperparameter σ > 0 is needed to allow for P and P̃ to have different marginal
distributions for the outcome variable. In the same section we argue that setting σ ≥ 1 allows us to focus our
statistical analysis on the usual MSW metric.

3Lemma B.2 shows that the ρ-MSW metric is indeed a metric.
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Thus, when ρ(·) is a norm, the only difference between our ρ-MSW metric and the usual
MSW metric is the set of one-dimensional projections that are used to define each metric.
For example, when ρ(·) = ‖ · ‖1 and σ = 1, the ρ-MSW metric considers the supremum on
the unit sphere defined by the ℓ1-norm, while the MSW metric considers the supremum on the
unit sphere defined by the ℓ2-norm. In both cases, restricting the norm of the one-dimensional
projections is needed to guarantee that these metrics are finite. Thus, one can think of ρ(·)
as normalizing the linear, one-dimensional projections (and consequently, balancing out the
numerator in Equation (4)).

To the best of our knowledge, the result showing that linear predictors whose coefficients
solve (1) equivalently minimize the worst-case, out-of-sample prediction error attained over
a neighborhood Br,ρ,σ

δ (Pn) based on the ρ-MSW metric is new. The connection between

(1) and (5) for the case r = 2, penalty ρ(·) = ‖ · ‖p, p ≥ 1, and Ŵr replaced by Wr , the
Wasserstein metric, was first established in [10, Theorem 1], using optimal transport (OT)
duality [13, 37]. These results have recently been extended to more general penalty functions
[25, 79]. Our balls are different to the ones considered in these papers: we focus on convex
penalty functions, and also our proofs do not rely on duality arguments. Instead, we explicitly
identify a worst-case measure P∗ ∈Br,ρ,σ

δ (Pn) for (5). Our results show that the measure P∗

is given by an additive perturbation of Pn (see Corollary 1). In this sense, our proof can be
seen as a natural extension of the seminal results in [8, Theorem 1]. Moreover, we believe
that Ŵr,ρ,σ is the natural metric to assess out-of-sample performance, as it allows for the
construction of neighborhoods containing a general class of testing distributions that are only
required to generate similar prediction errors as the training distribution Pn. To see this, note
that the out-of-sample prediction error, Q 7→ EQ[|Ỹ − X̃⊤β|r]1/r , is a Lipschitz continuous
function under the ρ-MSW metric for any given β and penalty function ρ. Specifically, for
any two distributions Q and P, the definition of ρ-MSW implies

| EQ[| Ỹ − X̃⊤β |r]1/r −EP[| Y −X⊤β |r]1/r |≤ (σ+ ρ(β))Ŵr,ρ,σ(P,Q).

Consequently, σ + ρ(β) can be interpreted as a Lipschitz constant that varies with β. Thus,
for fixed β, any two distributions that are close under the ρ-MSW metric have similar predic-
tion errors. The standard d-dimensional Wasserstein metric puts additional restrictions on the
testing distributions considered. This means that two distributions can have similar predic-
tion errors, but their Wasserstein distance could be very large, especially in high dimensions
(making the associated bounds not very useful in practice). In Section C.3 of the Supplemen-
tary Material [54] we further provide an example of two Gaussian distributions for which the
difference in prediction errors is small, but the the standard Wasserstein metric is large.

1.1.2. Statistical Analysis of Ŵr,ρ,σ(Pn,P). Our second set of results provide a detailed
analysis of the statistical properties of (4). For simplicity in the exposition, we focus on the
case when ρ satisfies the inequality

cd‖(γ,−1)‖ ≤ ρ(γ) + 1,(8)

for a constant cd > 0 and a norm ‖ · ‖ on Rd+1. We also define its dual norm ‖ · ‖∗ =
sup‖x‖=1〈x,y〉; e.g. for ‖ · ‖ = ‖ · ‖p for some p ≥ 1 we have ‖ · ‖∗ = ‖ · ‖q , where
q = p/(p− 1). Theorem 3 in Section 3 shows that if

Γ := EP

[
‖(X⊤, Y )‖s∗

]
<∞, for some s > 2r,

then with a probability greater than 1− α we have that

(9) Ŵr,ρ,σ(Pn,P)
r ≤

(
max

{
1

cd
, 1

})r C log(2n+ 1)r/s√
n

,
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where C is the constant in (31) and is a function of the parameters (r, d,α,Γ, s). Furthermore,
Theorem 5 in Section 4 shows there exists a constant C :=C(r, s, d), such that for all x≥ 0,

limsup
n→∞

P

(√
nŴr,ρ,σ (Pn,P)

r ≥ x
)
≤ P

(
sup
f∈F

|Gf | ≥
x

C
√
Γ

)
,(10)

where (Gf )f∈F is a zero-mean Gaussian process specified in Theorem 5.
The proofs of these results are based on a novel connection between an upper bound for the

Wasserstein distance in d = 1, and classical bounds from empirical process theory for self-
normalized processes. Its relative simplicity enables us to find the explicit constants above.

1.1.3. Applications. Choosing δ: Our statistical analysis provides a concrete oracle rec-
ommendation to select the regularization parameter δn,r in (1) to be equal to the (1/r)-th
power of the right-hand side of (9); see Section 5.1. Of course, the oracle recommendation
for δn,r is typically not feasible as it depends on the unknown parameter Γ. In Section 5.2, we
present a simple strategy to normalize the sample covariates that guarantees that both (9) and
(11) hold with Γ= 2s and σ =max{EP[|Y |s]1/s,1}. This means that we can turn our oracle
recommendation into a simple formula that only depends on the true and unknown distribu-
tion of the data through the s-th moment of the outcome (which is typically easy to estimate),
while also guaranteeing robustness to perturbations of the test dataset distribution from that
of the training data in the form of (11) below. This pivotality was the original motivation for
the use of the

√
LASSO and related estimators. The theoretical results in this paper (as well

as the numerical simulations reported in Section D of the Supplementary Material [54]) sug-
gest that, beyond pivotality, there are benefits—in terms of out-of-sample performance under
a variety of testing distributions— of using the

√
LASSO and related estimators.

We also note that our recommendation for the selection of regularization parameter does
not rely on any sparsity assumption. We think this is an important point, as recent work [38,
50] has argued that sparsity might not always be a compelling starting point in applications.

Finally, while we are able to provide a recommendation for δ, our current results do not
allow us to say anything concrete about the selection of penalty function, ρ. This is in part
due to the fact that, in our framework, we have too much flexibility making this choice. To
illustrate this point, suppose that we wanted to pick the penalty function to optimize the out-
of-sample prediction error of a linear predictor based on (1) at a known distribution Q. If n
denotes the sample size, we could always pick the convex penalty function

ρn(β) := n
(
EQ

[∣∣∣Y −X⊤β
∣∣∣
r])1/r

.

As n grows to infinity, the relevance of the penalty function increases, and thus the solution
of (1) converges to

arg inf
β∈Rd

(
EQ

[∣∣∣Y −X⊤β
∣∣∣
r])1/r

.

This just formalizes the obvious point that if we know the testing distribution Q at which we
would like to have good performance, then it is better to use the best predictor based on such
a distribution.

Bounds on out-of-sample performance: When the available sample consists of independent
and identical (i.i.d.) draws from a distribution P for which Γ < ∞ we can show that the
objective function in (1) provides explicit bounds on the out-of-sample performance of any
linear estimator. In particular, Theorem 6 in Section 5.1 shows that for any testing distribution
Q for which Ŵr,ρ,σ(P,Q)≤ ǫ, we have with probability at least 1− α,

(11) EQ

[
|Y −X⊤β|r

]1/r ≤ EPn

[
|Y −X⊤β|r

]1/r
+ (δn,r + ǫ)(σ+ ρ(β)), ∀β.
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Ranking the out-of-sample performance of competing estimators. Finally, we present a test
statistic to rank the out-of-sample performance of two different linear estimators (Section
5.4).

1.2. Related Literature. The distributionally robust optimization problem in (5) has been
shown to be equivalent to various forms of penalized regression, variance-penalized estima-
tion, and dropout training [12, 13, 30, 37, 47, 53, 55], depending on the choice of uncertainty
set. It is typical to define uncertainty sets using metrics or divergences: e.g., total variation,
Hellinger, Gelbrich distance [55] or Kullback-Leibler divergence [24, 63]. To the best of our
knowledge, the use of the max-sliced Wasserstein metric to define uncertainty sets in DRO
problems is novel.

As we have discussed above, the equivalence between (1) and (5) has been established
in [10, Theorem 1] using a ball in the Wasserstein metric, which is a common choice for
the uncertainty set in the distributionally robust optimization literature [11, 36, 37, 45, 48,
53, 66, 69]. Relative to previous results, we focus on convex penalty functions (and not only
norms), and also we explicitly identify a worst-case measure P∗ ∈Br,ρ,σ

δ (Pn) for (5), instead
of relying on duality arguments. In this sense, our proof can be seen as a natural extension of
[8, Theorem 1].

DRO representations similar to (5) are known to be useful in many situations, for example,
those where the trained procedure will be evaluated on test data from a distribution P̃ that is
close to that of the training data, P, but may be different [7], when there are covariate shifts
[2, 20, 60, 62, 67, 71, 72, 78], or when one experiences adversarial attacks [41, 46]. As
discussed in the seminal work of [8], DRO representations similar to (5) “offer a different

perspective on regularization methods by identifying which adversarial perturbations the

model is protected against”. This a fortiori means that in any helpful representation similar
to (5), the set of adversarial distributions for which a regularization method protects against
must depend on the regularizer itself. Thus, it should not be surprising that the max-sliced
Wasserstein metric introduced in this paper depends on ρ. And in fact, previous uses of the
Wasserstein metric for DRO representations of the

√
LASSO and related estimators also

depend on ρ; c.f. Proposition 2 in [10].
Starting from [27, 34], the question of establishing finite sample bounds on the Wasserstein

metric and its variants has seen a spike in research activity over the last years: an incomplete
list is [15, 23, 49, 57, 68, 77]; see also the references therein. When d > 2r, tight rates for
Wr(Pn,P) are of the order n−1/(rd) , i.e. they suffer from the curse of dimensionality. As
our results show, this is not the case for the ρ-MSW distance. The faster rates of convergence
for the max-sliced Wasserstein metric were first observed in [57] for subgaussian probability
measures and in [51] under a projective Poincaré/Bernstein inequality. More recently, [4]
have obtained sharp rates for r = 2 and isotropic distributions. Our rates are of the same
order, up to logarithmic factors, and simultaneously hold for all r ≥ 1 and all distributions
with finite higher-order moments. Lastly, let us mention that most of the papers cited above
only give explicit rates, while the constants are often non-explicit and large, cf. [33]. A
notable exception is the recent work of [56] and [39]. In particular, using log-concavity, [56]
derives sharp rates for the max-sliced Wasserstein metric that explicitly state the dependence
on the dimension of the data. In Section 5 we further discuss how these results can be used
to provide a recommendation for δ based on our DRO representation.

A large part of the theoretical literature studying penalized regressions as in (1) has explicit
recommendations for the choice of the penalization parameters. For the case of the LASSO
estimator, [22] present conditions such as the widely used cross-validation method has nearly
optimal rates of convergence in prediction norms, and [21] suggest utilizing a bootstrap ap-
proximation to estimate the penalization parameter. For the case of the

√
LASSO, [5, 6] pro-

posed a pivotal penalization parameter with asymptotic guarantees. Our work complements
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these previous results by recommending a penalization parameter that explicitly controls the
out-of-sample prediction error (for a finite sample and/or asymptotically).

1.3. Outline. The rest of the paper is organized as follows. In Section 2, we present a
detailed discussion of the equivalence of (1) and (5). In Sections 3 and 4 we present rates for
the MSW distance Ŵr,ρ,σ between the true and empirical measure, both for P with compact
support and for P satisfying Γ<∞. Section 3 gives a finite sample analysis, while Section 4
provides asymptotics. In Section 5, we present a recommendation for the selection of regular-
ization parameter, δn,r , that guarantees good out-of-sample prediction error. We also present
a test statistic to rank the out-of-sample performance of two different linear estimators. In
Section 6, we present a small-scale simulation to illustrate the performance of predictions
based on the

√
LASSO but using our recommended parameter δ. All the proofs are collected

in the Supplementary Material [54].

1.4. Notation. Random Variables. We use capital, bold letters—such as Z and Z̃—to
denote Borel measurable random vectors in Rd, and use Zj to denote the j-th coordinate of Z.
We denote the set of all Borel probability measures in Rd by P(Rd) and let Pr(R

d)⊂P(Rd)
denote all Borel probability measures with finite rth moments. If the random vector Z has
distribution or law P ∈ P(Rd), we write Z∼ P. The expectation of Z is denoted as EP[Z].

Covariates and outcome variables. We reserve X for the random column vector col-
lecting the d covariates available for prediction, and Y for the scalar outcome variable. The
realizations of covariates and outcomes are denoted as x and y, respectively. In a slight
abuse of notation, we sometimes write (X, Y ) to denote a random vector in Rd+1 (instead of
(X⊤, Y )⊤).

Couplings. For two probability measures Q and P, we define a coupling of Q and P as any
element of P(Rd ×Rd) that preserves the marginals over Rd. We denote the collection of all
such couplings as Π(Q,P). By definition, if (Z̃,Z) is an Rd×Rd-valued random vector with
distribution π ∈Π(Q,P), then Z̃∼Q and Z∼ P.

Penalty functions. For a function ρ :Rd →R we write

ρ∗ (β) := sup
x∈Rd

{
β⊤x− ρ(x)

}
,

for its conjugate (see [64]). If ρ is convex, a vector β∗ is said to be a subgradient of ρ at a
point β if:

ρ(x)≥ ρ(β) +β∗⊤ (x−β) , ∀x ∈Rd.

The set of all subgradients of ρ at β is called the subdifferential of ρ at β and is denoted by
∂ρ(β), ([64]; pp. 214-215).

Lastly, let us mention two important facts that will be relevant in Section 2.1. If ρ is
differentiable, then its subdifferential ∂ρ(β) is a singleton that contains the gradient of ρ at
β; see, for example, ([64]; Theorem 25.1). If ρ is a norm in Rd, then ρ∗ is only equal to zero
or infinity; see ([17]; p. 93).

2. Reformulation as a DRO problem. For any r,σ ∈ [1,∞), and ρ : Rd → [0,+∞)
define the collection of distributions

Br,ρ,σ
δ (P) :=

{
Q ∈ Pr(R

d+1) : Ŵr,ρ,σ(Q,P)≤ δ
}

=
{
Q ∈ Pr(R

d+1) : ∀γ ∈Rd, ∃ a coupling π(γ) ∈Π(P,Q)

for which Eπ(γ)

[
|(Ỹ − Y ) + (X− X̃)⊤γ|r

]
≤ δr(σ+ ρ(γ))r,

where
(
(X, Y ), (X̃, Ỹ )

)
∼ π(γ)

}
.

(12)
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As explained in the Introduction, a distribution Q belongs to the ball in (12) if and only
if for any γ there exists a coupling of P and Q that makes the r-th norm of their prediction
errors small, relative to ρ(γ). We remark that the infimum in the definition of Ŵr,ρ,σ(Q,P)
given in (4) is attained for fixed γ.4 Furthermore, for any norm ρ, the supremum over γ in
equation (4) is also attained. For notational simplicity we will suppress the dependence of the
ball Br,ρ,σ

δ (P) on r, ρ, σ and write Bδ(P) instead.
The main result of this section establishes a formal connection between the solutions to

the problems in (1) and (5).

THEOREM 1. Fix 1≤ r <∞ and 1≤ σ <∞. Let ρ : Rd → [0,+∞) be a convex penalty
function. Suppose that, for any β ∈Rd, there exists a subgradient β∗ ∈ ∂ρ(β) such that

(13)

∣∣∣∣γ⊤
(
β∗ − β

β⊤β
ρ∗
(
β∗)
)∣∣∣∣≤ ρ(γ), ∀ γ ∈Rd.

Then, for any δ ≥ 0 and any β ∈Rd we have

sup
P̃∈Bδ(P)

E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]

=

(
r

√
EP

[
|Y −X⊤β|r

]
+ δ (σ+ ρ(β))

)r

.(14)

Theorem 1 shows that the worst-case, out-of-sample performance of any linear predictor
over the collection of distributions Bδ(P) equals the r-th power of the objective function in
(1). The result in (14) thus implies

(15) arg infβ∈Rd

[
sup

P̃∈Bδ(P)

E
P̃

[∣∣Y −X⊤β
∣∣r]
]
= arg infβ∈Rd

r

√
EP

[
|Y −X⊤β|r

]
+ δρ(β).

Our interpretation of equation (15) is that the
√

LASSO and related estimators in (1) have
good out-of-sample performance for any testing distribution, P̃, that is not far (in terms of
the ρ-MSW metric) from the baseline training distribution, P. This result is independent
of how the regularization parameter δ is selected and generalizes the connection between
regularization and generalization performance first established in [8].

We briefly sketch the proof of Theorem 1 here and refer to Section A.1 for details. It
proceeds in two steps:

Step 1. We use the triangle inequality and the definition of the ρ-MSW metric to show that

(16) E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]

≤
(

r

√
EP

[
|Y −X⊤β|r

]
+ δ (σ+ ρ(β))

)r

,

holds for any β ∈Rd and any P̃ ∈Bδ(P).
Step 2. We show that for any β ∈ dom(ρ), the upper bound given in Step 1 is tight. That

is, we explicitly construct, for each β ∈ dom(ρ) a distribution P∗
β ∈Bδ(P), for which the

bound holds exactly. The worst-case distribution is presented in Corollary 1 below.

COROLLARY 1. For each β ∈ Rd the supremum in (14) is attained for the distribution
P∗
β corresponding to the random vector (X̃, Ỹ ) defined as

X̃=X− e

(
β∗ − β

β⊤β
ρ∗ (β∗)

)
, Ỹ = Y + σe,

4Indeed, note that the function ((x, y), (x̃, ỹ)) 7→ |(ỹ − y) + (x̃− x)⊤γ|r is continuous and non-negative.
The result then follows from [74, Theorem 4.1].
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where

e :=
δ
(
Y −X⊤β

)

r

√
EP

[
|Y −X⊤β|r

] , (X, Y )∼ P.

One aspect of Corollary 1 that is worth emphasizing is that the testing distribution that
attains the worst out-of-sample performance is an additive perturbation of the baseline train-
ing distribution. The perturbation has a low-dimensional structure where a one-dimensional
error, e, which is proportional to prediction error, Y −X⊤β, is added to X using loadings
that depend on the subgradient of ρ at β and also on the conjugate of ρ.

It is easy to see that the minimizer in (15) is attained. Denote this minimizer by β(P).
Then β(P) is also a minimizer of EP∗

β

[∣∣Y −X⊤β
∣∣r]. Indeed, for any β ∈Rd we have

EP∗

β

[∣∣∣Y −X⊤β
∣∣∣
r]

= sup
P̃∈Bδ(P)

E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]

≥ inf
β∈Rd

sup
P̃∈Bδ(P)

E
P̃

[ ∣∣∣Y −X⊤β
∣∣∣
r ]

= sup
P̃∈Bδ(P)

E
P̃

[ ∣∣∣Y −X⊤β(P)
∣∣∣
r ]

≥ EP∗

β

[∣∣∣Y −X⊤β(P)
∣∣∣
r]

.

In particular, for any linear predictor with slope β, it is always possible to find a perturbation
of P for which a predictor based on (15) performs better.

REMARK 1 (On condition (13)). If ρ is a norm, then the condition in (13) is automati-
cally satisfied; i.e., there exists a β∗ ∈ ∂ρ(β) such that (13) is true. Thus, the conclusion of
Theorem 1 holds for all ρ(·) = ‖ · ‖ that are norms. Indeed, recalling that the dual norm of
‖ · ‖ is given by

‖x‖∗ := sup
y:‖y‖=1

x⊤y,

in that case [17, Example 3.26] states that ρ∗(x) = ∞1{‖x‖∗>1}. Recall further that β∗ ∈
∂ρ(β) if and only if

(β∗)⊤β− ρ∗(β∗) = ρ(β).(17)

Both facts together imply that ρ∗(β∗) = 0; thus, ‖β∗‖∗ ≤ 1 for all β∗ ∈ ∂ρ(β). Hence in
(13), as claimed, we have

(18)

∣∣∣∣γ⊤
(
β∗ − β

β⊤β
ρ∗(β∗)

)∣∣∣∣=
∣∣γ⊤β∗∣∣≤ ‖γ‖‖β∗‖∗ ≤ ‖γ‖, ∀ γ ∈Rd.

On the other hand, the following example shows that condition (13) is not only satisfied
by norms:

EXAMPLE 1 (Condition (13) for a function ρ that is not a norm). Fix any compact set
K ⊆Rd such that −K =K and consider

ρ(β) = sup
y∈K

β⊤y.
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Then ρ is convex (as a supremum of linear functions), finite (as K is compact), non-negative
(as K =−K), symmetric ρ(β) = ρ(−β) (as K =−K), and homogeneous ρ(λβ) = λρ(β).
Thus,

ρ∗(β∗) = sup
γ∈Rd

(
β∗⊤γ − ρ(γ)

)
=

{
∞ if ∃γ ∈Rd s.t. β∗⊤γ − ρ(γ)> 0,

0 if β∗⊤γ − ρ(γ)≤ 0 for all γ ∈Rd.

By (17) we conclude that ρ∗(β∗) = 0 for all β ∈Rd; therefore, β∗⊤γ ≤ ρ(γ) for all γ ∈Rd.
By symmetry of ρ, we also have that |β∗⊤γ| ≤ ρ(γ). It follows that

∣∣∣∣γ⊤
(
β∗ − β

β⊤β
ρ∗(β∗)

)∣∣∣∣≤ ρ(γ), ∀ γ ∈Rd.

REMARK 2. Take any norm ‖ · ‖ on Rd+1 satisfying ‖(0, . . . ,0,1)‖ = 1 and recall that
its dual norm is given by

‖x‖∗ := sup
y:‖y‖=1

x⊤y.(19)

Assume that EP [‖(X, Y )‖r∗] <∞ and consider a Wasserstein ball BW
δ (P) with cost ‖ · ‖∗,

defined as

(20) BW
δ (P) =

{
P̃ ∈ Pr(R

d+1) : Wr(P, P̃)≤ δ
}
,

where

Wr(P, P̃) = inf
π∈Π(P,P̃):

((X,Y ), (X̃,Ỹ ))∼π

r

√
Eπ

[
‖(X, Y )− (X̃, Ỹ )‖r∗

]
.

We show that for ρ(·) = ‖·‖, the ball defined in (12) contains the ball in (20), i.e. BW
δ (P)⊆

Bδ(P). For this, we note that by (19) we have

Eπ

[∣∣∣∣
(
Ỹ − Y

)
+
(
X− X̃

)⊤
γ

∣∣∣∣
r]

≤ ‖(γ,−1)‖r Eπ

[
‖(X, Y )− (X̃, Ỹ )‖r∗

]

≤ (1 + ‖γ‖)r Eπ

[
‖(X, Y )− (X̃, Ỹ )‖r∗

]
.

As σ ≥ 1, we conclude

sup
γ∈Rd

inf
π∈Π(P,P̃)

1

σ+ ‖γ‖
r

√
Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
r]

≤ inf
π∈Π(P,P̃)

r

√
Eπ

[
‖(X, Y )− (X̃, Ỹ )‖r∗

]
.

The above can be applied in particular to ‖ ·‖= ‖ ·‖p and ‖ ·‖∗ = ‖ ·‖q , where 1/p+1/q = 1.

We note that the conditions used for the derivations in Remark 2 are sufficient, but not nec-
essary. To make this point, consider the case in which r = 2 and ρ(β) = ‖β‖1. The Wasser-
stein distance, W2, between P and P̃ is defined by

W2(P, P̃) = inf
π∈Π(P,P̃)

Eπ[‖(X, Y )− (X̃, Ỹ )‖22]1/2 ,
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where ‖ · ‖2 is the Euclidean distance. For any coupling π, the Cauchy-Schwarz inequality
implies

Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤β
∣∣∣
2
]1/2

≤ ‖ (β,−1)‖2 Eπ

[
‖(X, Y )− (X̃, Ỹ )‖22

]1/2
,

where the right-hand side of the previous inequality is less than

(1 + ‖β‖2)Eπ

[
‖(X, Y )− (X̃, Ỹ )‖22

]1/2
,

due to the triangle inequality. Since we have assumed that σ ≥ 1, we have 1 + ‖β‖2 ≤ σ +
‖β‖1. Consequently:

Ŵ2,ρ,σ(P, P̃)≤W2(P, P̃).

Thus, balls based on the ρ-MSW metric can be larger than balls based on the d-dimensional
Wasserstein metric, even when the latter does not use a cost function based on the dual norm
of ρ. Our previous derivations also hold, mutatis mutandi, for penalty functions ρ(β) = ‖β‖p
whenever p ∈ [1,2]. Remark 2 focuses on the case in which i) ρ is a norm, and ii) the cost
function used in the d-dimensional Wasserstein metric is associated to the dual norm of ρ to
make our results directly comparable to those in Proposition 2 in [10].

2.1. Examples of distributions in the ρ-MSW ball. In this subsection we analyze the types
of testing distributions that are contained in the ball defined in (12). We do this by considering
different estimators that take the form (1).

2.1.1.
√

LASSO. Let us take r = 2 and

ρ(β) = ‖β‖1 =
d∑

j=1

|βj |.

Under this choice of penalty function, the regression problem (15) is the objective function
of the

√
LASSO of [5], also studied in [6]. These papers have shown that the

√
LASSO es-

timator achieves the near-oracle rates of convergence in sparse, high-dimensional regression
models over data distributions that extend significantly beyond normality.

Clearly ρ is a norm; in particular, it is nonnegative and convex. Thus, Condition (13) of
Theorem 1 is satisfied, cf. Remark 1.

One set of distributions that belongs to a neighborhood of size δ based on the ρ-MSW
metric is:

B
√
LASSO

δ (P) :=
{
Q ∈ P2(R

d+1) | ∃ a coupling π ∈Π(Q,P) for which:

Eπ

[∣∣∣X̃j −Xj

∣∣∣
2
]
≤ δ2, ∀ j = 1, . . . , d, and Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
]
≤ (δσ)2,

where ((X, Y ), (X̃, Ỹ ))∼ π}.

(21)

This set of distributions contains perturbations of covariates and outcomes that are small

in 2-norm. We verify that B
√
LASSO

δ (P) ⊆ Bδ(P), where Bδ(P) is the set of balls used in
Theorem 1 and defined in (12).

To see this, notice Eπ[|X̃j −Xj |2]≤ δ2 for all j = 1, . . . , d implies condition (12), i.e.

Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
2
]
≤ δ2 (σ+ ρ(γ))2 .
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Indeed, the triangle inequality implies that for any γ ∈ Rd and any coupling π ∈ Π(P,Q)
consistent with (21), we have
√
Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
2
]
≤
√

Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
]
+

d∑

j=1

|γj |
√

Eπ

[(
X̃j −Xj

)2]

≤ δσ+ δ

d∑

j=1

|γj |= δ(σ+ ρ(γ)).

Consequently, B
√
LASSO

δ (P) ⊆ Bδ(P). We note that the other direction, namely, Bδ(P) ⊆
B

√
LASSO

δ (P) does not hold in general.

It is worth mentioning that the set B
√
LASSO

δ (P) contains different versions of (X, Y )
measured with error. For example, any additive measurement error model of the form

X̃j = Xj + uj and Ỹ = Y + v, where E[u2j ] ≤ δ2 and E[v2] ≤ (δσ)2. Also, B
√
LASSO

δ (P)

contains multiplicative errors-in-variables models where X̃j =Xjuj , and Ỹ = Y v, with u’s
independent of (X, Y ), having mean equal to one, EP[X

2
j ]E[(uj−1)2 ≤ δ2, and independent

of v having mean equal to one and EP[Y
2]E[(v− 1)2]≤ (δσ)2.

It is well known that the conjugate of ρ is

ρ∗(β) =

{
0 max{|β1|, . . . , |βd|} ≤ 1,

∞ otherwise.

The argument is analogous to Remark 1. Moreover, algebra shows β∗ = (sign(β1), . . . , sign(βd))
⊤ ,

is a subgradient of ρ at β. Using these facts, we can determine the worst-case distribution for
each particular β. Indeed, Corollary 1 states that: X̃=X− e (sign(β1), . . . , sign(βd))

⊤ , and
Ỹ = Y + σe, where

e :=
δ
(
Y −X⊤β

)
√
EP

[
(Y −X⊤β)2

] , (X, Y )∼ P.

The worst-case mean-squared error of
√
LASSO is attained at distributions where there is a

(possibly correlated) measurement error that has a factor structure. Note that the worst-case
distribution is an element of (21).

2.1.2. Square-root SLOPE. Now suppose again that r = 2, but let

ρ(β) =

d∑

j=1

λj |β|(j),

where λ1 ≥ · · · ≥ λd ≥ 0 and |β|(j) are the decreasing order statistics of the absolute values
of the coordinates of β. Under this penalty function—which is nonnegative—the penalized
regression problem in (15) is the objective function of the square-root SLOPE of [70].

An equivalent definition for this penalty function is

(22) ρ(β) =max
pm

d∑

j=1

λpm(j)|βj |,

where we maximize over all permutations, pm, of the coordinates {1, . . . , d}. It follows that
ρ is a norm, so Condition (13) of Theorem 1 is satisfied (see Remark 1).
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For a given β ∈ Rd, let pm∗ be a permutation that solves (22). Define β∗ by β∗
j =

λpm∗(j) sign(βj). Algebra shows that ρ(β) = β∗⊤β and β∗⊤γ ≤ ρ(γ), for any γ ∈ Rd.

It follows that ρ(γ)≥ ρ(β) + β∗⊤γ − β∗⊤β, which implies that β∗ is a subgradient of ρ at
β. Recall that ρ∗(β∗) = 0; thus, (13) holds.

In this case, distributions belonging to balls of size δ based on the ρ-MSW metric are

BSLOPE
δ (P) :={Q ∈ P2(R

d) : ∃ a coupling π ∈Π(Q,P) for which:

Eπ

[∣∣∣X̃(j) −X(j)

∣∣∣
2
]
≤ (δλj)

2, ∀ j = 1, . . . , d,

and Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
∣∣∣∣≤ (δσ)2, where ((X, Y ), (X̃, Ỹ ))∼ π},

where the decreasing order statistic is induced by the vector
(
Eπ

[∣∣∣X̃j −Xj

∣∣∣
2])

j=1,...,d
. As

for the
√
LASSO, we check that BSLOPE

δ (P) ⊆ Bδ(P). The triangle inequality implies that
for any coupling π ∈Π(P,Q):
√

Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
2
]
≤
√
Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
]
+

d∑

j=1

|γj |
√
Eπ

[∣∣∣X̃j −Xj

∣∣∣
2
]

=

√
Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
]
+

d∑

j=1

∣∣γ(j)
∣∣
√
Eπ

[∣∣∣X̃(j) −X(j)

∣∣∣
2
]

≤ δ (σ+ ρ(γ)) ,

where the last equality follows by the definition of BSLOPE
δ (P) and (22).

Finally, we report the worst-case distribution for each particular β. Corollary 1 shows that
X̃=X− eβ∗ and Ỹ = Y + σe, where the j-coordinate of β∗ is λpm∗(j) sign(βj) and

e :=
δ
(
Y −X⊤β

)
√

EP

[
|Y −X⊤β|2

] , (X, Y )∼ P.

Note that the worst-case distribution is an element of BSLOPE
δ (P).

3. Finite sample guarantees for the ρ-MSW-distance. Throughout this section, we
assume that the data {(Xi, Yi)}ni=1 consists of i.i.d. draws from a true distribution that we
denote by P. We denote the empirical distribution based on the available data by Pn.

This section provides explicit upper bounds on the radius δ of the ball Bδ(Pn) defined in
(12), to guarantee that the true (and unknown) distribution, P, belongs to the ball Bδ(Pn)
with a pre-specified probability. Our derivations are valid for any finite sample, which means
that they hold regardless of the dimension of the covariates, d, the sample size, n, and the
true distribution P.

Recall from (4) that

(23) Ŵr,ρ,σ(P, P̃) = sup
γ∈Rd

inf
π∈Π(P,P̃):

((X,Y ), (X̃,Ỹ ))∼π

1

σ+ ρ(γ)
r

√
Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
r]
.

An important comment about the hyperparameter σ is in turn. Suppose that ρ is a norm and
we tried to set σ = 0 in the definition of Ŵr,ρ,σ above. It then follows from the definition,
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that any distribution P̃ for which Ŵr,ρ,0(P, P̃)≤ δ must have the same marginal distributions
over the outcome variable; i.e., Ỹ ∼ Y . As a result, whenever Y is a random variable of the
absolutely continuous type, any ball around Pn will fail to contain the true distribution P.
Therefore, introducing a hyperparameter σ > 0 is important for our analysis.

Notice that we can rewrite the equation above in terms of the one-dimensional Wasserstein
metric:

Ŵr,ρ,σ(P, P̃) = sup
γ∈Rd

1

σ+ ρ(γ)
Wr

([
(X, Y )⊤γ̄

]
∗
P,
[
(X̃, Ỹ )⊤γ̄

]
∗
P̃

)
,(24)

where γ̄⊤ = (γ⊤,−1) and f∗P denotes the pushforward measure of P with respect to a map
f :Rd+1 →R and Wr . The one-dimensional Wasserstein metric is simply defined as

Wr(Q, Q̃) = inf
π∈Π(Q,Q̃):

(X,X̃)∼π

r

√
Eπ

[∣∣∣X − X̃
∣∣∣
r]
.(25)

We focus on the case where ρ satisfies (8), i.e. cd‖(γ,−1)‖ ≤ ρ(γ) + 1, for all γ ∈ Rd,
for some constant cd > 0 and an arbitrary norm ‖ · ‖ on Rd+1. E.g. for γ(·) = ‖ · ‖1, (8) is
satisfied with cd = 1.

Using the definition in (24) we derive the following upper bound for Ŵr,ρ,σ(P, P̃):

Ŵr,ρ,σ(P, P̃) = sup
γ∈Rd

‖γ̄‖
σ+ ρ(γ)

1

‖γ̄‖Wr

([
(X, Y )⊤γ̄

]
∗
P,
[
(X̃, Ỹ )⊤γ̄

]
∗
P̃

)

≤ cρ,d

(
sup

γ̃:‖γ̃‖=1
Wr

([
(X, Y )⊤γ̃

]
∗
P,
[
(X̃, Ỹ )⊤γ̃

]
∗
P̃

))
=: cρ,d Wr(P, P̃),(26)

where γ̄⊤ = (γ⊤,−1) and cρ,d := max{1/cd,1} .
The quantity Wr defined in (26) is known as the max-sliced Wasserstein (MSW) distance

on (Rd+1,‖ · ‖). Moreover, it is a special case of the Projection Robust Wasserstein (PRW)
distance, also called the Wasserstein Projection Pursuit (WPP), see [59, Definition 1]. The
work in [59, Proposition 1] shows that Wr(P, P̃) is a metric (the proof is stated for the case
r = 2, but carries over line by line to arbitrary r ≥ 1). Note that the connection between our
metric Ŵr,ρ,σ(P, P̃) and the more typical MSW metric used the fact that σ ≥ 1.

As stated in the Introduction, it is well known that, in the worst case, Wr(Pn,P)
r ∼

n−1/(d+1). In what follows, we show that the MSW distance Wr does not have this limi-
tation. To show this, we first make a few notational simplifications. We write Pγ and Fγ ,
respectively, for the distribution and cdf of the scalar (X, Y )⊤γ under P. Similarly, we write
Pγ,n and Fγ,n, respectively, for the probability measure and cdf of (X, Y )⊤γ under Pn. Note
that, in particular, by (26) we have Wr(P, P̃) = sup‖γ‖=1Wr(Pγ , P̃γ).

We now provide explicit upper bounds for Wr(P,Pn). By equation (26), for any δ we have

(27) P

(
Ŵr,ρ,σ(P,Pn)≤ cρ,d · δ

)
≥ P

(
Wr(P,Pn)≤ δ

)
.

This means that probabilistic statements about Wr(P,Pn) translate immediately to the ρ-
MSW metric. For simplicity in the exposition, we first cover compactly supported measures
P in Section 3.1 and then the general case in Section 3.2.

3.1. The compactly supported case.
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THEOREM 2. Let P have compact support. With probability at least 1− α,

Wr(Pn,P)
r ≤ C√

n
,

where

(28) C :=
(
180

√
d+ 2+

√
2 log

( 1
α

))
diam(supp(P))r ,

and diam(supp(P)) = sup{‖x− x̃‖∗ : x, x̃ ∈ supp(P)}, is the diameter of the support of P
measured with respect to the dual norm.

3.2. The general case. We now consider a more general set-up where P is an arbitrary
random variable that satisfies a mild moment condition; namely,

Γ := EP [‖(X, Y )‖s∗]<∞, for some s > 2r.(29)

Our result generalizes the work of [57] and [51], who provide rates for Wr(Pn,P) assuming
certain transport or Poincaré inequalities: we give similar rate statements with fully explicit
constants under assumption (29), that is easy to verify in practice.

Our main result in this section is the following:

THEOREM 3. Assume s > 2r and Γ<∞. Then, with probability greater than 1− 3α,

(30) Wr(Pn,P)
r ≤ C log (2n+ 1)r/s√

n
,

where

C := 2rr
(
180

√
d+ 2+

√
2 log

(
1

α

)
+

√
Γ

α

8

s/2− r

√
log

(
8

α

)
+ (d+ 2)

)
.(31)

4. Asymptotics for ρ-MSW-distance. We now provide asymptotic upper bounds for
the ρ-MSW distance between the true and empirical measure. For this it is sufficient to prove
the corresponding bounds for Wr(P,Pn) as explained in (26) and (27). The following the-
orem provides a Donsker type result, i.e. asymptotic

√
n-rates without logarithmic factors,

as well as an inequality for the expectation without an explicit constant. One can then ob-
tain concentration results similarly to [51, Theorem 3.7, 3.8] if a Bernstein tail condition or
Poincare inequality is satisfied. As before, we relegate the proofs of these results to the Sup-
plementary Material [54]. We first consider probability measures P with compact support.

THEOREM 4. If P is compactly supported, then

limsup
n→∞

P
(√

n Wr (Pn,P)
r ≥ x

)
≤ P

(
sup
t∈[0,1]

|B(t)| ≥ x

c

)
,

where c= diam(supp(P))r and (B(t))t∈[0,1] is a standard Brownian bridge.

We now state the general result:

THEOREM 5. Assume Γ= EP [‖(X, Y )‖s∗]<∞, for some s > 2r, and define

H+ :=
{
|t|s 1{t≤x⊤γ} : (γ, t) ∈Rd+1 × [0,∞), ‖γ‖= 1

}
,

H0 :=
{
1{x⊤γ≤t} : (γ, t) ∈Rd+1 ×R, ‖γ‖= 1

}
,

H− :=
{
|t|s 1{t>x⊤γ} : (γ, t) ∈Rd+1 × (−∞,0), ‖γ‖= 1

}
.
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Then there exists a constant C :=C(r, s, d), such that for all t≥ 0,

limsup
n→∞

P
(√

n Wr(Pn,P)
r ≥ t

)
≤ P

(
sup

f∈H+∪H0∪H−

|Gf | ≥
t

C
√
Γ

)
,

where (Gf )f∈H+∪H0∪H− is a zero-mean Gaussian process with covariance

E [Gf1Gf2 ] = EP [f1f2]−EP [f1]EP [f2] ∀f1, f2 ∈H+ ∪H0 ∪H−.(32)

Furthermore, for all n ∈N, we have EP

[√
n Wr(Pn,P)

r
]
≤C

√
Γ.

5. Recommendation to select the regularization parameter δn,r .

5.1. Recommendation based on finite sample bounds. Our statistical analysis in Section
3 provides a concrete oracle recommendation to select the regularization parameter δn,r in
(1). Our choice is based on Theorem 3 and guarantees that the true data generating process is
contained in the ball Bδn,r

(Pn) with high probability:

(33) δn,r =max

{
1

cd
,1

}[
C log (2n+ 1)r/s√

n

]1/r
,

where cd is the constant such that cd‖(γ,−1)‖ ≤ ρ(γ) + 1 for all γ and some norm ‖ · ‖ in
Rd+1 and C is the constant defined in (31).

In the case where the support of P is compact, we can specialize our recommendation to
select the regularization parameter δn,r with guidance from Theorem 2. This recommendation
is given in the following:

(34) δn,r =max

{
1

cd
,1

}[
C√
n

]1/r
,

where C is now the constant defined in (28). In the case of compact support, our recom-
mended regularization parameter only depends on P through the diameter of its support.5

Theorem 6 below shows that the objective function of the penalized regression in (1)
constitutes—up to some adjustment terms—an upper bound for the expected prediction error
at Q (provided it is close to P).

THEOREM 6. Suppose the conditions of Theorem 3 (or 2) holds. Consider δn,r defined
in (33) (or (34)). Then, for any ǫ≥ 0 and Q such that Ŵr(P,Q)≤ ǫ, with probability greater
than 1− 3α, we have

EQ

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

≤ EPn

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

+ (δn,r + ǫ) (σ+ ρ(β)) , ∀β .

The result implies that linear predictors that solve (1) and use our recommended parame-
ters δn,r have good out-of-sample performance at the true, unknown distribution of the data
P, and, also, at testing distributions Q that are close to P in the ρ-MSW metric.

The oracle recommendation for the regularization parameter δn,r is typically not feasible
as it depends on the unknown parameter Γ. The next section presents a normalization strategy
on the covariates such that Theorem 6 holds with Γ= 2s and σ =max{EP[|Y |s]1/s, 1}.

5Let us remark that estimating the support of a distribution is an intricate statistical question, going back at
least to [32]. We refer to [9, 26, 80] for some recent results in support estimation. We also remark that in some
applications (e.g. for discrete distributions arising in surveys) it is plausible that supp(P) is known and thus it
need not be estimated.
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An interesting avenue for future work is to use the results in [56] (which assume log-
concavity of the joint distribution of covariates and outcomes) to recommend a regularization
parameter roughly of order: ||Σ||1/2op

√
d log(n)/n1/r, where r ≥ 2 and || · ||op is the operator

norm of the covariance matrix of (X,Y ). To do this, it would be necessary to recover the im-
plicit constants that appear in Theorem 1 of [56] (which only depend on r), and additionally
provide some results for the consistent estimation of the operator norm of Σ. Because the
rates in [56] are faster than ours (when d is fixed, their rates are of order n1/r whereas ours
are of order n1/2r), the regularization parameters based on the results of [56] will typically be
smaller (making it less likely that the robust predictors ignore the available covariates). How-
ever, we remark that even for the Wasserstein metric on the real line, the rates of order n1/2r

cannot be improved upon, unless one imposes further structure on the true data generating
process. See Theorem 7.11 and Corollary 7.12 in [14], and the discussion therein.

We note that our approach for choosing the regularization parameter, δ, is explicitly de-
signed to guarantee the bound on out-of-sample prediction error presented in Theorem 6.
As we have explained before, a sufficient condition to obtain such a bound is to ensure that
the true distribution, P, belongs to the ball Br,ρ,σ

δn,r
(Pn) with probability at least 1− α. Thus,

Theorem 6 is possible thanks to the statistical analysis of the ρ-MSW metric. [10] acknowl-
edges that a similar strategy for selecting δ using concentration inequalities for the standard
Wasserstein metric would yield a recommendation of order O(n−1/d); see their discussion
after Theorem 4, p. 848. However, it is important to mention that there are other possibilities
for choosing δ that do not necessarily target generalization error. For instance, if we followed
the objective described in Section 1.1.2 of [10] (which the authors describe as covering the
true parameter of a linear regression model with probability at least 1− α), it would be pos-
sible to recommend values for the regularization parameter of order O(n−1/2). In particular,
for the

√
LASSO the authors recommend a tuning parameter equal to

λ=
π

π− 2

Φ−1(1− α/2d)√
n

,

which, up to a constant, coincides with the recommendation in [5]. In Section C.4 of the Sup-
plementary Material [54], we show that if we adopt the objective of [10] (and their assump-
tions), but use our DRO representation based on the ρ-MSW metric, we could recommend
the same or even a smaller regularization parameter.

5.2. Covariate Normalization. In this section, we assume that the covariates in the
data have been normalized to satisfy EPn

[‖(X,0)‖s∗] = 1. This means that under mini-
mal regularity conditions we can assume that the true data generating process satisfies
EP [‖(X,0)‖s∗] = 1. It is common practice to impose some covariate normalization to esti-
mate the parameters of the best linear predictor using the

√
LASSO and related estimators;

see [5, Equation 4 p.2] for an example of a coordinate-wise, unit variance normalization.
The next theorem proposes a simple formula to select the regularization parameter δn,r

under our suggested normalization.

THEOREM 7. Suppose EP [‖(X,0)‖s∗] = 1 and EP[‖(0, . . . ,0, Y )‖s∗]1/s <+∞ for some
s > 2r. In addition, assume that (8) holds for an arbitrary norm in Rd and cd > 0, and σ =
max{EP[‖(0, . . . ,0, Y )‖s∗]1/s, 1}. Consider

(35) δn,r := max

{
1

cd
,1

}[
C log(2n+ 1)r/s)√

n

]1/r
,
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where

C := 2rr
(
180

√
d+ 2+

√
2 log

(
1

α

)
+

√
2s

α

8

s/2− r

√
log

(
8

α

)
+ (d+ 2)

)
.

Then, for any ǫ≥ 0 and Q such that Ŵr(P,Q)≤ ǫ, with probability greater than 1− 3α,

EQ

[∣∣Y −X⊤β
∣∣r
]1/r

≤ EPn

[∣∣Y −X⊤β
∣∣r
]1/r

+ (δn,r + ǫ) (σ+ ρ(β)) , ∀β .

5.3. Asymptotic recommendation. For compactly supported measures, Theorem 4 yields
the asymptotic oracle recommendation

(36) δn,r = cρ,d

[
n−1/2 · q1−α

]1/r
· diam(supp(P)) ,

where cρ,d is as in (26), q1−α is the (1 − α)-quantile of the Kolmogorov distribution.
In the general case, Theorem 5 yields δn,r = [n−1/2 · Γ1/2 · C]1/r, for some constant
C = C(r, s, d,α). However, the constant C is hard to determine explicitly. In particular it
depends on α through the quantile of the zero-mean Gaussian process (Gf )f∈H+∪H0∪H− ,
whose covariance structure depends on P and is given in (32) and is hard to bound explicitly.
We leave this issue for future research.

5.4. Application: ranking of estimators. Consider two estimators β1 = β1(Pn) and
β2 = β2(Pn), where Pn denotes the empirical distribution of i.i.d. draws from a true distri-
bution P. In this section, we investigate whether β1 has a better out-of-sample performance
than β2 over an uncertainty set B. That is,

(37) sup
Q∈B

EQ

[∣∣∣Y −X⊤β1

∣∣∣
r]1/r

≤ sup
Q∈B

EQ

[∣∣∣Y −X⊤β2

∣∣∣
r]1/r

.

We restrict our attention to uncertainty sets B that verify two conditions:

(i) B ⊆Bδ(P) =Br,ρ,σ
δ (P) for some σ, δ, and ρ.

(ii) The supremum on the left side of (37) is achieved for P∗
β1

, and the supremum on the right
side of (37) is achieved for P∗

β2

, where P∗
βj

are defined according to Corollary 1, j = 1,2.

Examples of such sets B are given in Section 2.1. Note that we cannot evaluate (37) directly,
as P is not observed. Instead, we propose the test statistic

Tn = n1/(2r)

(
EPn

[∣∣Y −X⊤β1

∣∣r]1/r −EPn

[∣∣Y −X⊤β2

∣∣r]1/r + δρ(β1)− δρ(β2)

2σ+ ρ(β1) + ρ(β2)

)
.

The next corollary states that Tn gives rise to a size–α test. For notational simplicity we focus
on compactly supported probability measures P, and simply remark that the same reasoning
can be used to derived tests for general P satisfying the assumptions of Theorems 3 and 5.

COROLLARY 2. In the setting of Theorems 1 and 2, consider C and cρ,d defined in (28)
and (26). Then, for any β1 and β2 satisfying (37), we have P (Tn > cρ,dC

1/r)≤ α.

6. Simulations. Suppose that the training data consists of n i.i.d. draws from a linear
regression model, meaning Yi =X⊤

i β+ σεi. We take εi to be uniformly distributed over the
interval [−1,1]. The vector of covariates, Xi ∈ Rd, is generated as Xi = σλX̃i, where X̃i

is a d-dimensional vector of independent uniform random variables over the [0,1] interval,
independently of εi. The parameters controlling the simulation design are (β, σ,λ, d).
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Fig 2: (Blue, Solid Line) Ratio of the oracle recommendations in (36) and (38): σ = 1, λ=
10, α= 0.05, n= 2,500 and β = [1,0, . . .0]⊤.

We first focus on linear prediction using coefficients estimated via the
√

LASSO (r =
2). Recall from (36) that our oracle recommendation for the tuning parameter is n−1/4 ·
(q1−α)

1/2 ·diam(supp(P)) , where q1−α is the 1−α quantile of the Kolmogorov distribution.
Algebra shows (see Section C.1 of the Supplementary Material [54]) that

diam(supp(P)) = σλ
(
d+ (‖β‖1 + (2/λ))2

)1/2
.

For comparison, the typical oracle recommendation for the
√

LASSO based on [5], can be
shown to equal

(38) n−1/2 · 3−1/2σλ ·Φ−1

(
1

2
+

(1− α)(1/d)

2

)
.

Figure 2 compares the ratio of (36) relative to (38). The figure shows that our recommen-
dation can be more than ten times larger than the typical recommendations in the literature.
Thus, one first concern is that the distributional robustness guaranteed by our choice of δn
could be achieved by setting all the coefficients to be zero (an adversarial nature cannot
increase much the generalization error of such a predictor, as it does not rely at all on covari-
ates). We also note that the recent work of [19] has shown that larger tuning parameters could
lead to incentive compatibility in certain human-machine interactive environments.

We now argue that in our simulation design it is possible to figure out the smallest sample
size that would be required to avoid a “trivial” prediction. It is known, see [70], that β = 0d×1

is a solution to the
√

LASSO problem if and only if

(39)
‖ 1
n

∑n
i=1Xiyi‖∞√
1
n

∑n
i=1 y

2
i

≤ δn,2.

Using a Central Limit Theorem and a Law of Large of numbers, algebra shows (see Section
C.2 in the Supplementary Material [54]) that (39) holds with high probability whenever

(40) n≤ 9 ·
∥∥∥∥∥

β√
β⊤β

∥∥∥∥∥

−4

∞
· (q1−α)

2 ·
(
d+ (‖β‖1 + (2/λ))2

)2
.
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(a) n= 2125 (b) n= 2250

(c) n= 2375 (d) n= 2500

Fig 3: Fraction of simulation draws in which the
√

LASSO selects 0,1,. . . , 4 nonzero coefficients:
(Blue) oracle δn in (38); (Red) our oracle recommendation of δn in (36).

For d = 10, β = (1,0,0 . . .0)⊤, α = .05 (or equivalently q1−α = 1.358) the corresponding
conservative bound is of about 2,200. This means that it will take a relatively large sample
size in order for our regularization parameter to select at least some covariates for prediction.

We verify this conjecture numerically. We simulate data using the σ = 1, λ = 10, d =
10,β = [1,0, . . . ,0]⊤ and consider sample sizes n ∈ {2125,2250,2375,2500}. Our design
corresponds to a low-dimensional problem (10 covariates and at least 2,000 observations).
Figure 3 below reports the histogram associated to the number of nonzero coefficients se-
lected by the

√
LASSO using the regularization parameters in (36) and (38). The numerical

results reported below are in line with the bound derived in (40).
Training/Testing error. Figure D.2 below reports the training/testing root-mean squared

prediction error (RMSPE) associated to the three estimators considered in our simulations:
the OLS estimator, the

√
LASSO with the δn in (38), and the

√
LASSO with the δn in (36).

The training data is generated according to the design described above for a sample size of
n = 2500. For testing, we perturb the true data generating process according to the worst-
case distribution derived in Corollary 1 with δn in (36) replacing δ. The plots report the
histogram—across simulations—of the “relative” root mean-squared prediction error in the
training (or testing) data. Each figure compares the estimators indicated in the legend below
them. For example, Panel a) of Figure D.2 reports the root MSPE of the

√
LASSO (SQL),

divided by the root MSPE of OLS, in both the training and testing data.
The simulation results are in line with the theoretical predictions. First, since we are con-

sidering a simulation design where n is large relative to d, the oracle δn in (38) is close to
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(a) SQL/OLS (b) SQL (new δn) / SQL

Fig 4: Relative Training/Testing Root Mean-Squared Prediction Error.

(a) SQL (new δn) (b) SQL (old δn)

Fig 5: Testing error and Objective function

zero. This means that the predictions associated to the
√

LASSO in the training sample are
not very different to those obtained via OLS. Panel a) of Figure D.2 indeed shows that the rel-
ative training error between the

√
LASSO (with the typical δn) and OLS remains very close

to one across simulations. Panel b) shows that that the difference between the regularization
parameters in (38) and (36) generates a sizeable difference in training error. However, that
the larger value of δn does translate to better out-of-sample performance.

Finally, we verify the bound in Theorem 6. The corollary implies that with probability
at least 95% the root-MSPE of the

√
LASSO in the testing set (for any distribution in the

ball that is ǫ away from the true data generating process) must be bounded by the sum of
a) the root-MSPE of the

√
LASSO in the training set and ii) (δn + ǫ)(σ + ρ(β)). Figure 5

shows that the bound holds for the recommended δn, but not for the usual one. Additional
simulations are reported in Section D of the Supplementary Material [54].

SUPPLEMENTARY MATERIAL

Proofs of theorems, additional derivations, and numerical simulations are provided in the
Supplementary Material [54].



PREDICTION ERROR OF THE
√

LASSO ETC. 23

REFERENCES

[1] ADJAHO, C. AND T. CHRISTENSEN (2022): “Externally Valid Treatment Choice,” arXiv preprint

arXiv:2205.05561.
[2] AGARWAL, D., L. LI, AND A. SMOLA (2011): “Linear-time estimators for propensity scores,” in Pro-

ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR
Workshop and Conference Proceedings, 93–100.

[3] ANDREWS, I., D. FUDENBERG, A. LIANG, AND C. WU (2022): “The Transfer Performance of Economic
Models,” arXiv preprint arXiv:2202.04796.

[4] BARTL, D. AND S. MENDELSON (2022): “Structure preservation via the Wasserstein distance,” arXiv

preprint arXiv:2209.07058.
[5] BELLONI, A., V. CHERNOZHUKOV, AND L. WANG (2011): “Square-root lasso: pivotal recovery of sparse

signals via conic programming,” Biometrika, 98, 791–806.
[6] ——— (2014): “Pivotal estimation via square-root lasso in nonparametric regression,” The Annals of Statis-

tics, 42, 757–788.
[7] BEN-DAVID, S., J. BLITZER, K. CRAMMER, A. KULESZA, F. PEREIRA, AND J. W. VAUGHAN (2010):

“A theory of learning from different domains,” Machine learning, 79, 151–175.
[8] BERTSIMAS, D. AND M. S. COPENHAVER (2018): “Characterization of the equivalence of robustification

and regularization in linear and matrix regression,” European Journal of Operational Research, 270,
931–942.

[9] BIAU, G., B. CADRE, AND B. PELLETIER (2008): “Exact rates in density support estimation,” Journal of

Multivariate Analysis, 99, 2185–2207.
[10] BLANCHET, J., Y. KANG, AND K. MURTHY (2019): “Robust Wasserstein profile inference and applications

to machine learning,” Journal of Applied Probability, 56, 830–857.
[11] BLANCHET, J., Y. KANG, K. MURTHY, AND F. ZHANG (2019): “Data-driven optimal transport cost se-

lection for distributionally robust optimization,” in 2019 Winter simulation conference (WSC), IEEE,
3740–3751.

[12] BLANCHET, J., Y. KANG, J. L. M. OLEA, V. A. NGUYEN, AND X. ZHANG (2020): “Machine Learning’s
Dropout Training is Distributionally Robust Optimal,” arXiv preprint arXiv:2009.06111.

[13] BLANCHET, J. AND K. MURTHY (2019): “Quantifying distributional model risk via optimal transport,”
Mathematics of Operations Research, 44, 565–600.

[14] BOBKOV, S. AND M. LEDOUX (2019): One-dimensional empirical measures, order statistics, and Kan-

torovich transport distances, vol. 261, American Mathematical Society.
[15] BOISSARD, E. AND T. LE GOUIC (2014): “On the mean speed of convergence of empirical and occupation

measures in Wasserstein distance,” in Annales de l’IHP Probabilités et statistiques, vol. 50, 539–563.
[16] BONNEEL, N., J. RABIN, G. PEYRÉ, AND H. PFISTER (2015): “Sliced and Radon Wasserstein barycenters

of measures,” Journal of Mathematical Imaging and Vision, 51, 22–45.
[17] BOYD, S. AND L. VANDENBERGHE (2004): Convex optimization, Cambridge university press.
[18] BUNEA, F., J. LEDERER, AND Y. SHE (2013): “The group square-root lasso: Theoretical properties and

fast algorithms,” IEEE Transactions on Information Theory, 60, 1313–1325.
[19] CANER, M. AND K. ELIAZ (2024): “Should Humans Lie to Machines? The Incentive Compatibility of

Lasso and GLM Structured Sparsity Estimators,” Journal of Business & Economic Statistics, 1–19.
[20] CHEN, X., M. MONFORT, A. LIU, AND B. D. ZIEBART (2016): “Robust covariate shift regression,” in

Artificial Intelligence and Statistics, PMLR, 1270–1279.
[21] CHERNOZHUKOV, V., D. CHETVERIKOV, K. KATO, AND Y. KOIKE (2023): “High-dimensional data boot-

strap,” Annual Review of Statistics and Its Application, 10, 427–449.
[22] CHETVERIKOV, D., Z. LIAO, AND V. CHERNOZHUKOV (2021): “On cross-validated lasso in high dimen-

sions,” The Annals of Statistics, 49, 1300–1317.
[23] CHIZAT, L., P. ROUSSILLON, F. LÉGER, F.-X. VIALARD, AND G. PEYRÉ (2020): “Faster Wasserstein dis-

tance estimation with the Sinkhorn divergence,” Advances in Neural Information Processing Systems,
33, 2257–2269.

[24] CHRISTENSEN, T. AND B. CONNAULT (2023): “Counterfactual sensitivity and robustness,” Econometrica,
91, 263–298.

[25] CHU, H. T., K.-C. TOH, AND Y. ZHANG (2022): “On regularized square-root regression problems: dis-
tributionally robust interpretation and fast computations,” Journal of Machine Learning Research, 23,
1–39.

[26] CUEVAS, A. AND R. FRAIMAN (1997): “A plug-in approach to support estimation,” The Annals of Statis-

tics, 25, 2300 – 2312.
[27] DEREICH, S., M. SCHEUTZOW, AND R. SCHOTTSTEDT (2013): “Constructive quantization: Approxima-

tion by empirical measures,” in Annales de l’IHP Probabilités et statistiques, vol. 49, 1183–1203.



24 MONTIEL OLEA, RUSH, VELEZ, WIESEL

[28] DESHPANDE, I., Y.-T. HU, R. SUN, A. PYRROS, N. SIDDIQUI, S. KOYEJO, Z. ZHAO, D. FORSYTH, AND

A. G. SCHWING (2019): “Max-sliced Wasserstein distance and its use for GANs,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10648–10656.
[29] DEVROYE, L. AND G. LUGOSI (2001): Combinatorial methods in density estimation, Springer Science &

Business Media.
[30] DUCHI, J. C., P. W. GLYNN, AND H. NAMKOONG (2021): “Statistics of robust optimization: A generalized

empirical likelihood approach,” Mathematics of Operations Research.
[31] DUCHI, J. C. AND H. NAMKOONG (2021): “Learning models with uniform performance via distribution-

ally robust optimization,” The Annals of Statistics, 49, 1378–1406.
[32] FISHER, R. A., A. S. CORBET, AND C. B. WILLIAMS (1943): “The relation between the number of species

and the number of individuals in a random sample of an animal population,” The Journal of Animal

Ecology, 42–58.
[33] FOURNIER, N. (2023): “Convergence of the empirical measure in expected Wasserstein distance: non-

asymptotic explicit bounds in Rd,” ESAIM: Probability and Statistics, 27, 749–775.
[34] FOURNIER, N. AND A. GUILLIN (2015): “On the rate of convergence in Wasserstein distance of the em-

pirical measure,” Probability Theory and Related Fields, 162, 707–738.
[35] FRIEDMAN, J., T. HASTIE, AND R. TIBSHIRANI (2017): The elements of statistical learning: data mining,

inference and prediction, vol. 1 of Series in Statistics, New York: Springer, second edition ed.
[36] GAO, R., X. CHEN, AND A. J. KLEYWEGT (2022): “Wasserstein distributionally robust optimization and

variation regularization,” Operations Research.
[37] GAO, R. AND A. KLEYWEGT (2023): “Distributionally robust stochastic optimization with Wasserstein

distance,” Mathematics of Operations Research, 48, 603–655.
[38] GIANNONE, D., M. LENZA, AND G. E. PRIMICERI (2021): “Economic Predictions With Big Data: The

Illusion of Sparsity,” Econometrica, 89, 2409–2437.
[39] GOLDFELD, Z., K. KATO, G. RIOUX, AND R. SADHU (2024): “Statistical inference with regularized

optimal transport,” Information and Inference: A Journal of the IMA, 13.
[40] GOODFELLOW, I., Y. BENGIO, AND A. COURVILLE (2016): Deep Learning, MIT Press.
[41] GOODFELLOW, I. J., J. SHLENS, AND C. SZEGEDY (2014): “Explaining and Harnessing Adversarial Ex-

amples,” CoRR, abs/1412.6572.
[42] HASTIE, T., A. MONTANARI, S. ROSSET, AND R. J. TIBSHIRANI (2022): “Surprises in high-dimensional

ridgeless least squares interpolation,” The Annals of Statistics, 50, 949–986.
[43] KOLOURI, S., K. NADJAHI, U. SIMSEKLI, R. BADEAU, AND G. ROHDE (2019): “Generalized sliced

Wasserstein distances,” Advances in neural information processing systems, 32.
[44] KPOTUFE, S. AND G. MARTINET (2021): “Marginal singularity and the benefits of labels in covariate-

shift,” The Annals of Statistics, 49, 3299–3323.
[45] KUHN, D., P. M. ESFAHANI, V. A. NGUYEN, AND S. SHAFIEEZADEH-ABADEH (2019): “Wasserstein

distributionally robust optimization: Theory and applications in machine learning,” in Operations re-

search & management science in the age of analytics, Informs, 130–166.
[46] KURAKIN, A., I. GOODFELLOW, AND S. BENGIO (2016): “Adversarial machine learning at scale,” arXiv

preprint arXiv:1611.01236.
[47] LAM, H. (2016): “Robust sensitivity analysis for stochastic systems,” Mathematics of Operations Research,

41, 1248–1275.
[48] LEE, J. AND M. RAGINSKY (2018): “Minimax statistical learning with Wasserstein distances,” Advances

in Neural Information Processing Systems, 31.
[49] LEI, J. (2020): “Convergence and concentration of empirical measures under Wasserstein distance in un-

bounded functional spaces,” Bernoulli, 26, 767–798.
[50] LI, C. M. AND U. K. MÜLLER (2021): “Linear regression with many controls of limited explanatory

power,” Quantitative Economics, 12, 405–442.
[51] LIN, T., Z. ZHENG, E. CHEN, M. CUTURI, AND M. I. JORDAN (2021): “On projection robust optimal

transport: Sample complexity and model misspecification,” in International Conference on Artificial

Intelligence and Statistics, PMLR, 262–270.
[52] MANSOUR, Y., M. MOHRI, AND A. ROSTAMIZADEH (2009): “Domain Adaptation: Learning Bounds

and Algorithms,” in Proceedings of The 22nd Annual Conference on Learning Theory (COLT 2009),
Montréal, Canada.

[53] MOHAJERIN ESFAHANI, P. AND D. KUHN (2018): “Data-driven distributionally robust optimization us-
ing the Wasserstein metric: Performance guarantees and tractable reformulations,” Mathematical Pro-

gramming, 171, 115–166.
[54] MONTIEL OLEA, J. L., C. RUSH, A. VELEZ, AND J. WIESEL (2024): “Supplement to “The out-of sample

prediction error of the
√

LASSO and related estimators",” .



PREDICTION ERROR OF THE
√

LASSO ETC. 25
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SUPPLEMENTARY MATERIAL TO “The out-of-sample prediction error of the
√

LASSO and
related estimators”

APPENDIX A: PROOF OF RESULTS IN THE MAIN TEXT

A.1. Proof of Theorem 1. In Section 2 we provide a proof sketch after the statement of The-
orem 1. Here we elaborate on the details of the proof. The statements of two steps mentioned in
Section 2 are repeated below for the reader’s convenience.

Step 1. We show that

(A.1)
(
E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r])1/r

≤ r

√
EP

[∣∣Y −X⊤β
∣∣r]+ δ (σ+ ρ(β)) ,

holds for any β ∈Rd and any P̃ ∈Bδ(P).
Proving Step 1. Take an arbitrary P̃ ∈ Bδ(P) and let π(β) be an optimal coupling for Ŵr,ρ,σ .

By writing π(β) we emphasize that the coupling will depend on β; though, this matters little for
the proof. Namely, ((X, Y ), (X̃, Ỹ ))∼ π(β) with (X, Y )∼ P and (X̃, Ỹ )∼ P̃. Consequently we
conclude that

E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]

= Eπ(β)

[∣∣∣Ỹ − X̃⊤β
∣∣∣
r]

.

By the triangle inequality we obtain

r

√
Eπ(β)

[∣∣Ỹ − X̃⊤β
∣∣r]= r

√
Eπ(β)

[∣∣(Ỹ − Y ) + (Y −X⊤β) + (X− X̃)⊤β)
∣∣r]

≤ r

√
Eπ(β)

[
|Y −X⊤β|r

]
+ r

√
Eπ(β)

[∣∣(Ỹ − Y ) + (X− X̃)⊤β)
∣∣r].

Recalling the choice of π(β) we conclude that

r

√
Eπ(β)

[∣∣∣Ỹ − X̃⊤β
∣∣∣
r]

≤ r

√
EP

[∣∣Y −X⊤β
∣∣r]+ δ (σ+ ρ(β)) .(A.2)

Step 2. We show that for any β ∈ dom(ρ), the upper bound given in Step 1 is tight; i.e. we construct
P∗ ∈Bδ(P), for which the bound holds exactly.

Proof Step 2. Let β∗ be an element of ∂ρ(β) satisfying Equation (13).
Consider the distribution P∗ corresponding to the random vector (X̃, Ỹ ) defined by

(A.3) X̃=X− e

(
β∗ − β

β⊤β
ρ∗(β∗)

)
, Ỹ = Y + σe,

where

e :=
δ(Y −X⊤β)

r

√
EP

[∣∣Y −X⊤β
∣∣r]

, (Y,X)∼ P.

The distributions P∗ and P are already coupled, since (X̃, Ỹ ) are measurable functions of (X, Y )∼
P. Let π∗(β) denote the coupling of (P∗,P).

Next we show that the distribution P∗ of (X̃, Ỹ ) is an element of Bδ(P): by construction we
have

Eπ∗(β)

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
r]

= Eπ∗(β)

[
|e|r

∣∣∣∣∣σ+

(
β∗ − β

β⊤β
ρ∗(β∗)

)⊤
γ

∣∣∣∣∣

r]

=

∣∣∣∣∣σ+ (β∗)⊤γ − β⊤γ
β⊤β

ρ∗(β∗)

∣∣∣∣∣

r

Eπ∗(β) [|e|r]

≤ [δ (σ+ ρ(γ))]r ,
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where the last inequality follows because

∣∣(β∗ − β

β⊤β
ρ∗(β∗)

)⊤
γ
∣∣≤ ρ(γ),

for any γ ∈Rd by the assumption in (13) and since EP[|e|r] = δr .
Thus, we only need to compute EP∗ [|Y −X⊤β|r] = Eπ∗(β)[|Ỹ − X̃⊤β|r]. Adding and sub-

tracting X⊤β and Y to Ỹ − X̃⊤β we have from (A.3)

Ỹ − X̃⊤β = Ỹ − Y + Y −X⊤β+ (X− X̃)⊤β =
(
Y −X⊤β

)
+ e (σ+ ρ(β)) ,(A.4)

where the last term applies [64, Theorem 23.5, p. 218], which shows that for any proper, convex
function β∗ ∈ ∂ρ(β) if and only if

(β∗)⊤β− ρ∗(β∗) = ρ(β);

hence,
(
X− X̃

)⊤
β = e

(
β∗ − β

β⊤β
ρ∗(β∗)

)⊤
β = eρ (β) .

Therefore, using (A.4) and writing (Y −X⊤β) as e r
√

EP[|Y −X⊤β|r]/δ, we have that

EP∗

[∣∣∣Y −X⊤β
∣∣∣
r]

= Eπ∗(β)

[∣∣∣
(
Y −X⊤β) + e(σ+ ρ(β))

∣∣∣
r]

=

∣∣∣∣
1

δ
r

√
EP[|Y −X⊤β|r] + (σ+ ρ(β))

∣∣∣∣
r

EP [|e|r]

=

∣∣∣∣
r

√
EP

[
|Y −X⊤β|r

]
+ δ(σ+ ρ(β))

∣∣∣∣
r

.

In the final step above, we again used that EP[|e|r] = δr .

A.2. Proof of Theorem 2. We first recall the representations for the one-dimensional Wasser-
stein distance

Wr(Pγ,n,Pγ)
r =

∫ 1

0

∣∣∣F−1
γ,n(p)− F−1

γ (p)
∣∣∣
r
dp,(A.5)

for r ≥ 1 and

W1(Pγ,n,Pγ) =

∫

R

∣∣Fγ,n(t)− Fγ(t)
∣∣ dt,(A.6)

see e.g. [14, Theorem 2.9, Theorem 2.10]. We also note that Wr is translation invariant, which implies
in particular that

Wr
(
Pγ,n, Pγ

)
=

Wr

([
((X, Y )− (x0, y0))

⊤ γ
]
∗
Pγ,n,

[
((X, Y )− (x0, y0))

⊤ γ
]
∗
Pγ

)
,

for any x0 ∈ Rd and y0 ∈ R. Defining c := diam(supp(P)), there is thus no loss of generality if we
assume that

supp(Pγ)⊆ [0, c] .(A.7)

Noting that |F−1
γ,n(p)− F−1

γ (p)| ≤ c for all p ∈ (0,1), we estimate

Wr(Pγ,n,Pγ)
r = sup

‖γ‖=1

(∫ 1

0

∣∣∣F−1
γ,n(p)− F−1

γ (p)
∣∣∣
r
dp

)

≤ cr−1 sup
‖γ‖=1

(∫ 1

0

∣∣∣F−1
γ,n(p)− F−1

γ (p)
∣∣∣ dp

)
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= cr−1 sup
‖γ‖=1

(∫

R

∣∣Fγ,n(t)− Fγ(t)
∣∣ dt
)
,

where the final inequality follows from (A.5) and (A.6). Next, recalling (A.7),

sup
‖γ‖=1

∫

R

∣∣Fγ,n(t)− Fγ(t)
∣∣ dt≤ sup

‖γ‖=1

∫ c

0
sup
t

∣∣Fγ,n(t)− Fγ(t)
∣∣ ds≤ c sup

f∈H
|EPn [f ]−EP[f ]| ,

where

H :=
{
1{x⊤γ≤ t} : γ ∈Rd+1, t ∈R

}
.

The claim now follows from Lemma B.3 in Section B.

A.3. Proof of Theorem 3. By Lemma B.4 in Section B with k = log (2n+ 1)1/s we have

(A.8) Wr(Pn,P)
r ≤ 2rr log (2n+ 1)r/s

(
I1 +

√
Γ∨ Γn

s/2− r
log (2n+ 1)−1/2 I2

)
,

where

I1 = sup
(γ, t)∈Rd+1×R

∣∣Fγ(t)− Fγ,n(t))
∣∣ ,

I2 = sup
(γ, t)∈Rd+1×R

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

+ sup
(γ, t)∈Rd+1×R

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

,

Γn = sup
‖γ‖=1

EPn

[
|(X, Y )⊤γ|s

]
= sup

‖γ‖=1

1

n

n∑

i=1

∣∣(Xi, Yi)
⊤γ
∣∣s ,

Γ= EP

[∥∥(X, Y )‖s2
]
= EP

[
sup

‖γ‖=1
|(X, Y )⊤γ|s

]
.

Next, by Markov’s inequality and the triangle inequality

P (Γn ≥C)≤ EP[Γn]

C
=

1

C
EP

[
sup

‖γ‖=1

1

n

n∑

i=1

∣∣∣(Xi, Yi)
⊤γ
∣∣∣
s
]
≤ Γ

C
.

Setting the last expression equal to α yields Γn ≤ Γ/α on a set of probability at least 1 − α.
Combining this with Lemma B.3 (to control I1) and Lemma B.5 (to control I2) yields that Wr(Pn,P)

r

is less than or equal to the following with probability greater than 1− 3α:

2rr log (2n+ 1)
r
s

[
1√
n

(
180

√
d+ 2+

√
2 log

(
1

α

))
+

√
Γ

α

1

s/2− r

1√
log (2n+ 1)

I2

]

≤ 2rr log (2n+ 1)
r
s√

n

[
180

√
d+ 2+

√
2 log

(
1

α

)
+

√
Γ

α

8

s/2− r

√
log

(
8

α

)
+ (d+ 2)

]
,

which is the claim.

A.4. Proof of Theorem 4. This claim follows from the estimate

Wr(Pγ,n,Pγ)
r ≤ diam(supp(P))r sup

f∈H0

|EPn [f ]−EP[f ]|,

stated in the proof of Theorem 2 together with
√
n sup
f∈H0

|EPn [f ]−EP[f ]| ⇒ sup
f∈H0

|Gf |,

as in the proof of Theorem 5. As supf∈H0 |Gf | dominates supt∈[0,1] |B(t)| in stochastic order, this
concludes the proof.
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A.5. Proof of Theorem 5. Note that again by [14, Proposition 7.14] we have

Wr(Pγ,n,Pγ)
r ≤ r2r−1

∫
|t|r−1|Fγ,n(t)− Fγ(t)|dt

= r2r−1
(∫ ∞

0
|t|r−1|(1− Fγ,n(t))− (1− Fγ(t))|dt+

∫ 0

−∞
|t|r−1|Fγ,n(t)− Fγ(t)|dt

)

≤ r2r−1 sup
f∈H+∪H0∪H−

|EPn [f ]−EP[f ]|
∫

(1∧ |t|r−s−1)dt

≤ c sup
f∈H+∪H0∪H−

|EPn [f ]−EP[f ]|,

where c := r2r−1
∫
(1 ∧ |t|r−s−1)dt. We next find an envelope F for H+ ∪H0 ∪H−: it is easy to

see that

sup
f∈H+

|f(x)| ≤ sup
‖γ‖=1

|x⊤γ|s ≤ ‖x‖s∗.

A similar argument for H− yields

F (x) := sup
f∈H+∪H0∪H−

|f(x)| ≤ ‖x‖s∗ ∨ 1.

As H0 is VC-subgraph by Lemma B.3, [Van der Vaart, Wellner, Lemma 2.6.22] implies that H+

and H− are also VC-subgraph: indeed note that

{(x, u) : u≤ |t|s1{t≤x⊤γ}}= {(x, u) : t≤ x⊤γ, u≤ |t|s} ∪ {(x, u) : t > x⊤γ}

= {(x, u) : t≤ x⊤γ} ∩ {(x, u) : u≤ |t|s} ∪ {(x, u) : t > x⊤γ},
so the claim follows from the fact that H is VC, finite dimensional vector spaces of functions are VC
subgraph [Van der Vaart, Wellner, Lemma 2.6.15], and [Van der Vaart, Wellner, Lemma 2.6.17 (ii),
(iii)]. Then, [Van der Vaart, Wellner, Theorem 2.6.7] states that for all ǫ ∈ (0,1),

N(ǫ‖F‖Q,2,H+ ∪H0 ∪H−,L2(Q))≤C1

(1
ǫ

)2C2−1
,

for universal constants C1,C2 > 1 and any probability measure Q, for which ‖F‖Q,2 > 0. Thus,
∫ ∞

0
sup
Q

√
logN(ǫ‖F‖Q,2,H+ ∪H0 ∪H−,L2(Q))dǫ <∞,

and together with Γ < ∞, [Van der Vaart, Wellner, Theorem 2.5.2] implies that H+ ∪ H0 ∪ H− is
Donsker. Thus, the convergence in distribution

√
n sup
f∈H+∪H0∪H−

|EPn [f ]−EP[f ]| ⇒ sup
f∈H+∪H0∪H−

|Gf |,

holds, where (Gf ) is a zero-mean Gaussian process satisfying

E[Gf1Gf2 ] = EP[f1f2]−EP[f1]EP[f2],

for any f1, f2 ∈H+ ∪H0 ∪H−. Next, from the proof of [Van der Vaart, Wellner, Theorem 2.5.2] we
obtain the inequality

EP

[
√
n sup
f∈H+∪H0∪H−

|EPn [f ]−EP[f ]|
]

≤C
√
Γ

∫ ∞

0
sup
Q

√
logN

(
ǫ‖F‖Q,2,H+ ∪H0 ∪H−,L2(Q)

)
dǫ.

This shows the second claim.
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A.6. Proof of Theorem 6. Note that Ŵr(Pn,Q) ≤ Ŵr(Pn,P) + Ŵr(P,Q) by the triangle
inequality because Ŵr is a metric for any norm ρ. Then,

En :=
{
Ŵr(Pn,Q)> δn,r + ǫ

}
⊂
{
Ŵr(Pn,P)> δn,r

}
⊂
{
Wr(Pn,P)> δn,r/cρ,d

}
,

which implies that the probability of Ec
n is greater than 1−3α due to Theorem 3 (or 2). In the equation

above, cρ,d is defined via (26). Finally, on the event Ec
n, we have

EQ

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

≤ sup
P̃∈Bδn,r+ǫ(Pn)

E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

= EPn

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

+
(
δn,r + ǫ

)
(σ+ ρ(β)) , ∀β ,

where the last equality follows from Theorem 1.

A.7. Proof of Theorem 7. The proof has three steps. The first two steps adapt what we learn
in Section 3 to our particular setup. The last step concludes based on observations about Theorems 1
and 3.

Step 1: Let us compare the ρ-MSW metric to the MSW metric using reasoning that is similar to
our derivations in (24) – (26). Defining γ̄⊤

σ = (γ⊤,−σ), we obtain

Ŵr(P, P̃) = sup
γ∈Rd

‖γ̄σ‖
σ+ ρ(γ)

1

‖γ̄σ‖
Wr

([
(X, Y/σ)⊤γ̄σ

]
∗
P, [(X̃, Ỹ /σ)⊤γ̄σ]∗P̃

)

≤ (max{1/cd,1}) sup
‖γ‖=1

Wr

([
(X, Y/σ)⊤γ

]
∗
P, [(X̃, Ỹ /σ)⊤γ]∗P̃

)

= (max{1/cd,1})Wr

(
Pσ, P̃σ

)
,

where Pσ := (X, Y/σ)∗P and P̃σ := (X, Y/σ)∗P̃.
Step 2: Let us apply Theorem 3 to compute the rates for Wr(P

σ, P̃σ), which depend on
EPσ [‖(X, Y )‖s∗]. Consider the following derivation

EPσ [‖(X, Y )‖s∗]≤ 2s−1 (EPσ [‖(X,0)‖s∗] +EPσ [‖(0, . . . ,0, Y )‖s∗]) .

Note that EPσ [‖(X,0)‖s∗] = EP [‖(X,0)‖s∗] = 1 and

EPσ [‖(0, . . . ,0, Y )‖s∗] = EP [‖(0, . . . ,0, Y/σ)‖s∗]≤ 1,

due to our assumptions. This implies that

EPσ [‖(X, Y )‖s∗]≤ 2s .

Step 3: We note that Theorem 3 still holds for any Γ larger than EP [‖(X, Y )‖s2]. In particular, we
can consider Γ= 2s due to Step 2. In addition, we note that the conclusion of Theorem 1 is unaffected
by the choice of σ ≥ 1. These observations and the same argument presented in the proof of Theorem 6
conclude our proof.

A.8. Proof of Corollary 2. By Theorem 1 and conditions (i), (ii) above, (37) is equivalent to

EP

[∣∣∣Y −X⊤β1

∣∣∣
r]1/r

+ δρ(β1)≤ EP

[∣∣∣Y −X⊤β2

∣∣∣
r]1/r

+ δρ(β2) .

The previous expression is equivalent to

n−1/(2r) (2σ+ ρ(β1) + ρ(β2))Tn ≤∆n(β2)−∆n(β1) ,

where ∆n(β) = EP

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

− EPn

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

. By definition of Ŵr and Theorem

1, it follows that

∆n(β2)

σ+ ρ(β2)
≤ Ŵr(P,Pn), and

−∆n(β1)

σ+ ρ(β1)
≤ Ŵr(Pn,P).
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Therefore we have

n−1/(2r) (2σ+ ρ(β1) + ρ(β2))Tn ≤ Ŵr(P,Pn) (2σ+ ρ(β1) + ρ(β2)) .

Using Ŵr(P,Pn)≤ cρ,dWr(Pn,P) from (26), we derive that

P

(
Tn > cρ,dC

1/r
)
≤ P

(
cρ,dWr(P,Pn)> cρ,dC

1/rn−1/(2r)
)
.

Finally, Theorem 2 implies that the above probability is bounded by α.

APPENDIX B: AUXILIARY RESULTS

We start with a preliminary discussion of Ŵr .

LEMMA B.1. Suppose that ρ is a norm on Rd. Let σ > 0 and define the norm ‖ · ‖ρ,σ via

|γ̃|ρ,σ := σ|γd+1|+ ρ(γ),

for γ̃ = (γ, γd+1), where γ ∈Rd and γ ∈R. Then

Ŵr,ρ,σ(P, P̃) = sup
γ̃∈Rd+1:‖γ̃‖ρ,σ=1

Wr(γ̃∗P , γ̃∗P̃) ,

and there exist positive constants c1 and c2 (may depend on the dimension d) such that

c1Ŵr,ρ,σ(P, P̃)≤Wr(P, P̃)≤ c2Ŵr,ρ,σ(P, P̃).

PROOF. Denote Z= (X⊤, Y ) and Z̃= (X̃⊤, Ỹ ). By definition

Ŵr,ρ,σ(P, P̃) = sup
γ∈Rd

1

σ+ ρ(γ)
inf

π∈Π(P,Q)
Eπ

[
|Z⊤(γ,−1)− Z̃⊤(γ,−1)|r

]1/r

= sup
γ∈Rd

1

|(γ,−1)|ρ,σ
inf

π∈Π(P,Q)
Eπ

[
|Z⊤(γ,−1)− Z̃⊤(γ,−1)|r

]1/r

= sup
γ∈Rd

inf
π∈Π(P,Q)

Eπ

[∣∣∣∣(Z− Z̃)⊤
(

γ

‖(γ,−1)‖ρ,σ
,

−1

‖(γ,−1)‖ρ,σ

)∣∣∣∣
r]1/r

≤ sup
γ̃=(γ,γd+1)∈Rd+1:‖γ̃‖ρ,σ=1

inf
π∈Π(P,Q)

Eπ

[
|Z⊤γ̃ − Z̃⊤γ̃|r

]1/r

= sup
γ̃=(γ,γd+1)∈Rd+1:‖γ̃‖ρ,σ=1

Wr(γ̃∗P , γ̃∗P̃)

= sup
γ̃=(γ,γd+1)∈Rd+1

1

|γd+1|(σ+ ρ(γ/|γd+1|))
inf
π

Eπ

[
|Z⊤γ̃ − Z̃⊤γ̃|r

]1/r

= sup
γ̃=(γ,γd+1)∈Rd+1

1

(σ+ ρ(γ/|γd+1|))
inf

π∈Π(P,Q)
Eπ

[∣∣∣∣(Z− Z̃)⊤
(

γ

|γd+1|
,
γd+1

|γd+1|

)∣∣∣∣
r]1/r

≤ Ŵr,ρ,σ(P, P̃) .

This proves our first result. Now, to prove the second result we rely on the following representations.

Wr(P, P̃) = sup
γ̃∈Rd+1:‖γ̃‖2=1

Wr(γ̃∗P , γ̃∗P̃) = sup
γ̃∈Rd+1

1

‖γ̃‖2
Wr(γ̃∗P , γ̃∗P̃),

and

Ŵr,ρ,σ(P, P̃) = sup
γ̃∈Rd+1

1

‖γ̃‖ρ,σ
Wr(γ̃∗P , γ̃∗P̃) .
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Because ‖ · ‖2 and ‖ · ‖ρ,σ are norms on Rd+1, it follows that there exist positive constants c1 and c2
such that

c1
‖γ̃‖ρ,σ

≤ 1

‖γ̃‖2
≤ c2

‖γ̃‖ρ,σ
, ∀γ̃ ∈Rd+1 .

We conclude the second result by using the previous inequality and the representations for Wr(P, P̃)

and Ŵr,ρ,σ(P, P̃) presented above.

More generally, Ŵr is always a metric, as the following lemma shows:

LEMMA B.2. The ρ-max-sliced Wasserstein Ŵr distance is a metric.

PROOF. Recall from (24) that

Ŵr(P, P̃) = sup
γ∈Rd

1

σ+ ρ(γ)
Wr

([
(X, Y )⊤γ̄

]
∗
P,
[
(X̃, Ỹ )⊤γ̄

]
∗
P̃

)
,

where γ̄⊤ = (γ⊤,−1). Because the one-dimensional Wasserstein metric, Wr , is non-negative, sym-
metric and satisfies the triangle inequality, the same is true for Ŵr . It remains to show that Ŵr(P, P̃) =

0 implies P= P̃. For this, we first realize that because σ+ ρ(γ)> 0, it follows that Ŵr(P, P̃) = 0 im-
plies

Wr

([
(X, Y )⊤γ̄

]
∗
P,
[
(X̃, Ỹ )⊤γ̄

]
∗
P̃

)
= 0, ∀γ ∈Rd.(A.9)

Now, for any γ̃ ∈ Rd+1 satisfying ‖γ̃‖2 = 1 and γ̃d+1 ≤ 0, there exists a sequence {γn}n∈N in Rd

such that

lim
n→∞

γ̄n

‖γ̄n‖2
= γ̃,

where again γ̄⊤
n := (γ⊤

n ,−1). By continuity, this implies

Wr

([
(X, Y )⊤γ̃

]
∗
P,
[
(X̃, Ỹ )⊤γ̃

]
∗
P̃

)
= 0, ∀ γ̃ ∈Rd+1 with γ̃d+1 ≤ 0;

and because
[
(X, Y )⊤γ̃

]
∗
P =

[
(X, Y )⊤γ̃

]
∗
P̃ implies

[
−(X, Y )⊤γ̃

]
∗
P =

[
−(X, Y )⊤γ̃

]
∗
P̃, we

have

Wr

([
(X, Y )⊤γ̃

]
∗
P,
[
(X̃, Ỹ )⊤γ̃

]
∗
P̃

)
= 0, ∀ γ̃ ∈Rd+1.

Positivity of Ŵr now follows from the fact that Wr is positive. This concludes the proof.

LEMMA B.3 (cf. [75, Theorem 4.10], [29, Chapter 4]). Let

H :=
{
1{x⊤γ≤ t} : γ ∈Rd+1, t ∈R

}
(A.10)

be the set of indicator functions of half spaces. Then, with probably at least 1− α,

sup
(γ,t)∈Rd+1×R

∣∣Fγ,n(t)− Fγ(t)
∣∣= sup

f∈H
|EPn [f ]−EP[f ]| ≤ 180

√
d+ 2

n
+

√
2

n
log

(
1

α

)
.

PROOF. By [75, Theorem 4.10], we have

P

(
sup
f∈H

|EPn [f ]−EP [f ]|> 2Rn(H) + ǫ

)
≤ e−nǫ2/2,

where

Rn(H) := EP,ε

[
sup
f∈H

∣∣∣∣∣
1

n

n∑

i=1

εif (Xi)

∣∣∣∣∣

]
,
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is the Rademacher complexity of H. Next, following [29, statement and proof of Theorem 3.2], we
obtain

Rn(H)≤ 12√
n

max
x1,...,xn∈Rd+1

∫ 1

0

√
2 logN

(
r,H(xn1 )

)
dr,(A.11)

where xn1 := {x1, . . . ,xn} and

H(xn1 ) := {(f(x1), . . . , f(xn)) : f ∈H} ,
and N(r,B) is defined as the cardinality of the smallest cover for any set B ⊆ {0,1}n of radius r with
respect to the distance

ρ(b,d) :=

√√√√ 1

n

n∑

i=1

1{bi 6=di},

where in the above, vectors b,d ∈B. [29, Theorem 4.3] states that

N(r,H(xn1 ))≤
(
4e

r2

)V/(1−1/e)

=

(
4e

r2

)V e/(e−1)

,(A.12)

where V is the VC-dimension of H. Furthermore, by [29, Corollary 4.2], the VC-dimension of H is
bounded by d+ 2, i.e. V ≤ d+ 2. In conclusion, using (A.12),

logN (r,H(xn1 ))≤
eV

e− 1
log

(
4e

r
2

)
≤ e(d+ 2)

e− 1
log

(
4e

r
2

)
.(A.13)

Following [29, proof of Theorem 3.3] we estimate

∫ 1

0

√
log

(
4e

r
2

)
dr ≤

√
2πe,(A.14)

so that from (A.13) and (A.14), we have
∫ 1

0

√
2 logN(r,H(xn1 ))dr ≤ 2e

√
(d+ 2)π

e− 1
≤ 7.5

√
d+ 2.

Using (A.11), this yields

Rn(H)≤ 90

√
d+ 2

n
.

LEMMA B.4. Define

Γn := sup
‖γ‖=1

EPn

[∣∣∣(X, Y )⊤γ
∣∣∣
s]

= sup
‖γ‖=1

1

n

n∑

i=1

∣∣∣(X, Y )⊤i γ
∣∣∣
s
.

For any k ∈R+, we have

Wr(Pn,P)
r ≤ r(2k)r sup

(γ,t)∈Rd+1×R

∣∣Fγ,n(t)− Fγ(t))
∣∣

+
2rr

√
Γ∨ Γn

s/2− r
kr−s/2

[
sup

(γ,t)∈Rd+1×R

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

+ sup
(γ,t)∈Rd+1×R

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

]
,

with the convention that 0/0 = 0 and the notation x+ := max{0, x}.



PREDICTION ERROR OF THE
√

LASSO ETC. 9

PROOF. We first note that [14, Proposition 7.14] yields, for any k > 0,

Wr(Pγ,n,Pγ)
r ≤ r2r−1

∫
|t|r−1|Fγ,n(t)− Fγ(t)|dt

≤ r(2k)r sup
t

|Fγ,n(t)− Fγ(t))|

+ r2r−1
∫

R\[−k,k]
|t|r−1

√
Fγ(t)(1− Fγ,n(t))

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

dt

+ r2r−1
∫

R\[−k,k]
|t|r−1

√
Fγ,n(t)(1− Fγ(t))

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

dt.

(A.15)

By Markov’s inequality, we have for any s≥ 1 and any t ∈R \ {0},

√
Fγ(t)(1− Fγ,n(t))∨

√
Fγ,n(t)(1− Fγ(t))≤

√
EP[|(X, Y )⊤γ|s]∨EPn [|(X, Y )⊤γ|s]

|t|s .

Plugging these bounds into (A.15), we obtain

Wr(Pγ,n,Pγ)
r

≤ r(2k)r sup
t

|Fγ,n(t)− Fγ(t))|

+ r2r−1
∫

R\[−k,k]
|t|r−1−s/2

√
EP[|(X, Y )⊤γ|s]∨EPn [|(X, Y )⊤γ|s] (Fγ(t)− Fγ,n(t))

+

√
Fγ(t)(1− Fγ,n(t))

dt

+ r2r−1
∫

R\[−k,k]
r|t|r−1−s/2

√
EP[|(X,Y)⊤γ|s]∨EPn [|(X, Y )⊤γ|s] (Fγ,n(t)− Fγ(t))

+

√
Fγ,n(t)(1− Fγ(t))

dt.

(A.16)

Recall that we have assumed s/2 > r where r ≥ 1. In particular, this means that |t|r−1−s/2 is inte-
grable on R \ [−k, k] and

r2r−1
∫

R\[−k,k]
|t|r−1−s/2 dt=

2rr

s/2− r
kr−s/2.

Taking the supremum over γ and t in (A.16) thus yields the claim.

LEMMA B.5. With probability greater than 1− α we have

sup
(γ,t)∈Rd+1×R

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

∨ sup
(γ,t)∈Rd+1×R

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

≤ 4

√
log(8/α) + (d+ 2) log(2n+ 1)

n
.

PROOF OF LEMMA B.5. We first define

J =
{
1{x⊤γ≤ t}, 1{x⊤γ>t} : (γ, t) ∈Rd+1 ×R

}
⊇H,

where H was defined in Lemma B.3. Considering the cases Fγ,n(t) < 1/2 and Fγ,n(t) ≥ 1/2
separately—noting that e.g. EPn [1{x⊤γ>t}] = 1−EPn [1{x⊤γ≤t}] = 1− Fγ,n(t)—one can check

sup
(γ,t)∈Rd+1×R

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

≤ 2

(
sup
f∈J

(EP[f ]−EPn [f ])
+

√
EP[f ]

∨ sup
f∈J

(EPn [f ]−EP[f ])
+

√
EPn [f ]

)
.

(A.17)
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By symmetry,

sup
(γ,t)∈Rd+1×R

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

≤ 2

(
sup
f∈J

(EP[f ]−EPn [f ])
+

√
EP[f ]

∨ sup
f∈J

(EPn [f ]−EP[f ])
+

√
EPn [f ]

)
.

(A.18)

Concentration for the terms on the right hand side of equations (A.17) and (A.18) is well studied:
indeed, e.g. by [29, Exercises 3.3 & 3.4] we have

P

(
sup
f∈J

EP[f ]−EPn [f ]√
EP[f ]

> ǫ

)
≤ 4SJ (2n)e−nǫ2/4,

P

(
sup
f∈J

EPn [f ]−EP[f ]√
EPn [f ]

> ǫ

)
≤ 4SJ (2n)e−nǫ2/4.

for all ǫ > 0, where SJ (2n) is the shattering coefficient of J . Note that by [29, Theorem 4.1] we have
SJ (2n)≤ 2SH(2n). As the VC-dimension of H is bounded by d+ 2, Sauer’s lemma [29, Theorem
Corollary 4.1] yields

log(SJ (2n))≤ (d+ 2) log(2n+ 1).

The claim follows by solving the above expression for ǫ.

APPENDIX C: ADDITIONAL DERIVATIONS

C.1. Diameter of the support of P in the simulation. Notice that X̃⊤
i β ≥ −‖β−‖1

where the equality holds, making equal to ones the entries of X̃i that corresponds negative values
of β. Similarly, X̃⊤

i β ≤ ‖β+‖1. Since Xi = σλX̃i, it follows that infXi
X⊤

i β = −σλ‖β−‖1 and
supXi

X⊤
i β = σλ‖β+‖1. Therefore, Yi ∈ [−σ(λ‖β−‖1 + 1), σ(λ‖β+‖1 + 1)]. Then, diameter of

the support equals
√
d(σλ)2 + σ2(λ‖β+‖1 + λ‖β−‖1 + 2)2 = σλ

√
d+ (‖β‖1 + 2/λ)2.

C.2. Derivation of Equation (40). The tuning parameter δn,2 used in the simulation is

δn,2 = n−1/4 ·Csim, where Csim ≡ (q1−α)
1/2 · σλ

(
d+ (‖β‖1 + (2/λ))2

)1/2
.

According to equation (39) it is known that β = 0d×1 is a solution to the
√

LASSO problem if and
only if

(A.19)
‖ 1
n

∑n
i=1Xiyi‖∞√
1
n

∑n
i=1 y

2
i

≤ δn,2 = n−1/4 ·Csim.

Because

Yi =X⊤
i β+ σεi,

equation (A.19) holds if and only if

(A.20)
‖
(
1
n

∑n
i=1XiX

⊤
i

)
β+ σ√

n
1√
n

∑n
i=1Xiεi‖∞

√
1
n

∑n
i=1 y

2
i

≤ n−1/4 ·Csim.

Because Xi = σλX̃i where X̃i is a d-dimensional vector of independent uniform random variables
over the [0,1], then

1

n

n∑

i=1

XiX
⊤
i

p→ E[XiX
⊤
i ] =

1

3
σ2λ2Id,
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where we have used that E[X̃2
i,j ] = 1/3 because X̃i,j is a uniform distribution on the [0,1] interval.

The Continuous Mapping Theorem and Central Limit Theorem then imply that

∥∥∥
(
1

n

n∑

i=1

XiX
⊤
i

)
β+

σ√
n

1√
n

n∑

i=1

Xiεi

∥∥∥
∞

p→ 1

3
σ2λ2‖β‖∞.

For the denominator,

1

n

n∑

i=1

y2i
p→ E[Y 2

i ] = β⊤E[XiX
⊤
i ]β+ σ2V(εi) =

1

3
σ2λ2β⊤β+ σ2V(εi),

where we have used the fact that ǫi is mean zero and independent of X̃i. The left-hand side of (A.20)
is thus bounded above with high probability by

(1/3)σ2λ2‖β‖∞
√
(1/3)σ2λ2

√
β⊤β

=
√
1/3 · σ · λ ·

∥∥∥ β√
β⊤β

∥∥∥
∞
.

This means that the event in (A.19) occurs with high probability if

(A.21)
√

1/3 · σ · λ ·
∥∥∥ β√

β⊤β

∥∥∥
∞

≤ 1

n1/4
Csim.

Using the definition of Csim, the event in (A.21) occurs if and only if

n≤ 9 ·
∥∥∥ β√

β⊤β

∥∥∥
−1/4

∞
(q1−α)

2 ·
(
d+ (‖β‖1 + (2/λ))2

)2
.

Thus, a sample size smaller than the right-hand side of the equation above implies that, with high
probability, β = 0d×1 will be a solution to the

√
LASSO problem.

C.3. Gaussian distributions with similar prediction errors, but large Wasserstein dis-
tance. Suppose (X, Y ) ∼ Nd+1(0, Id+1). Because (X, Y ) are, by assumption, independent and
have mean zero, the prediction error of any linear predictor X⊤γ equals the variance of Y plus the
variance of X⊤γ; that is

E[(Y −X⊤γ)2] = 1 + ‖γ‖22.
The prediction error scales with ‖γ‖2, so it makes sense to restrict this norm. Let us focus on predictors
for which ‖γ‖2 = 1.

Consider now a random vector (X̃, Ỹ ). Assume X̃=X+V where V ∼Nd(0, σ
2
vId) is an inde-

pendent source of measurement error. Set Ỹ = Y . For any γ such that ‖γ‖= 1:

E

[
(Ỹ − X̃⊤γ)2

]
= 2+ σ2v .

Thus, in this example
(
E

[
(Y −X⊤γ)2

]
−E

[
(Ỹ − X̃⊤γ)2

])
= σ2v .

Consequently, the difference in prediction errors equals σ2v .
Let P denote the distribution of (X, Y ) and, analogously, let P̃ denote the distribution of (X̃, Ỹ ).

The distance between P and P̃ can be considerably large when measured using the standard d-
dimensional Wasserstein metric. In fact, algebra shows that

W2(P, P̃) = (
√
1 + σ2v − 1)d1/2 ,

Thus, when d is large, the standard d-dimensional Wasserstein distance suggests that P and P̃ are very
different from one another. This stands in contrast with the magnitude of the difference in prediction
errors associated to P and P̃ which is equal to σ2v .
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In this example, one can further show that if we set ρ(·) = ‖ · ‖1, then for any σ > 0 we have

Ŵ2,ρ,σ(P, P̃)≤ σv .

Therefore, the example further shows that two distributions can be close in ρ-MSW metric, even
when their standard d-dimensional Wasserstein distance is large.

C.4. Alternative criterion for choosing δ. In this section we present a brief discussion of
the differences between our recommendation for selecting δ (which specifically targets out-of-sample
performance) and the recommendation in [10]. We show that if we use the same criterion as in [10],
our optimal δ would be upper bounded by their recommendation. As we explain below, this has to do
with the fact that our ρ-MSW balls are larger than those based on the standard Wasserstein metric.

Distributionally robust representation: First, it is worth mentioning that both our paper and [10]
present a distributionally robust representation of the

√
LASSO and related estimators. The key dif-

ference is that we define our class of testing distributions using the ρ-MSW metric (which we have
denoted by Ŵr,ρ,σ), instead of the Wasserstein metric. Based on our Remark 2, our balls are larger
than the Wasserstein balls used in [10].

Another difference, relative to their results, is that [10] take the same testing and training distri-
butions of the outcome variable; see their Proposition 2, Equation (14), Theorem 1. Thus, to make
our results comparable to them we set σ = 0 and use the notation Ŵr,ρ,0. We denote the Wasserstein
metric used in [10] by WB .

Criterion: [10] recommend δ∗n as the 1− α quantile of the profile function Rn(β):

Rn(β) =min{WB(Pn,Q) : γ 7→ EQ[|Y −X⊤γ|r] has minimizer β},(A.22)

see [10, eq. (16) and Section 4.2]. Assuming a linear regression model with Gaussian errors, Y =
XTβ∗ + e, and an appropriate normalization of the covariates X, it can be shown that

√
Rn(β

∗)≤ π

π− 2

Φ−1(1− α/2d)√
n

,

with probability asymptotically larger than 1−α, as n→∞, see [10, Theorem 7 and Remark 1]. This
aligns with the recommendation of [5].

Consider a modification of their profile function based on the ρ-MSW metric as follows:

R̃n(β) =min{Ŵr,ρ,0(Pn,Q) : γ 7→ EQ[|Y −X⊤γ|r] has minimizer β} .

If we define by δ̃∗n the 1−α quantile of the modified profile function R̃n(β), the event {Rn(β)≤ z} is
included in the event {R̃n(β)≤ z} because for any Q such that β is a minimizer of EQ[|Y −X⊤γ|r]
we have that Ŵr,ρ,0(Pn,Q)≤WB(Pn,Q) due to Remark 2. This implies that

P(R̃n(β)≤ z)≥ P(Rn(β)≤ z) ,

which allows us to conclude δ̃∗n ≤ δ∗n.

APPENDIX D: ADDITIONAL SIMULATIONS

Suppose now that the training data consists of n i.i.d. draws from a Gaussian, homoskedastic, linear
regression model. In other words

Yi =X⊤
i β+ σεεi,

where εi ∼ N (0,1) and Xi ∼ Nd(0, Id), with εi⊥Xi. The parameters controlling the simulation
design are (β, σǫ, d).

We are interested in comparing the out-of-sample performance of a linear predictor that uses co-
efficients estimated via the

√
LASSO (r = 2), with other popular regularization procedures (Ridge

regression and the LASSO). We use the standard tuning parameter for the
√

LASSO in [6]

δn ≡ (1.1) ·Φ−1
(
1− α

2d

)
· n−1/2,
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and we take α= .05. For Ridge regression, we use the approximately optimal oracle recommendation
in Corollary 6 of [42].6 For LASSO, we use the oracle recommendation discussed in [5], which equals
δn multiplied by the unknown paramater σǫ.7

We consider different sizes of the training data ntrain ∈ {2,50,100,150, . . . ,2000}. We set the size
of the testing data to be ntesting = 1000, and we benchmark the performance of each of the regularized
estimators relative to the root mean-squared prediction error of a predictor based on ordinary least-
squares (OLS). When d > ntrain we use the “ridgless” estimator in [42] as a benchmark.

For the testing data, we consider two different distributions. First, we consider ntesting new draws
from the true data generating process. Second, we perturb the true data generating process according
to the worst-case distribution derived in Corollary 1 with δn equal to the tuning parameter used by the√

LASSO. According to the first theorem in the paper, the
√

LASSO offers robustness against these
types of perturbations.

The simulation results provide two interesting findings. First, when the testing distribution and the
DGP are the same, the out-of-sample prediction error of the Ridge, LASSO, and

√
LASSO estimators

are larger than the OLS estimator. In this case, neither of the penalized estimators has any attractive
property in terms of out-of-sample performance. Second, when the testing distribution and the DGP are
different—and, in particular, the testing distribution is adversarial—then the OLS estimator has a larger
out-of-sample prediction error in comparison to the penalized estimators. Moreover, the

√
LASSO

estimator reports the lowest out-of-sample prediction error among the estimators. Importantly, in this
case, the

√
LASSO has clearly superior performance (up to 25%) relative to optimally tuned Ridge

and LASSO.
As we discussed in Section 6, the oracle recommendation for the regularization parameter of√

LASSO (based on our analysis of the ρ-MSW metric) can be more than 10 times larger than the
standard recommendation in [5]. This raises the question of whether the out-of-sample performance
of the Lasso reported in Panel d) of Figure D.2 can be improved by also using a larger regularization
parameter. Lemma 2 in [73]—which shows that the

√
LASSO and the LASSO share an explicit repa-

rameterization of their solution paths conditional on the data—imply that this is indeed possible. In
fact, Lemma 2 in [73] shows that, for each data realization and each possible regularization parameter,
δSQL, one can find a regularization parameter for the LASSO, δLASSO, such that both the LASSO and
the

√
LASSO estimators coincide. As a consequence, using δLASSO, guarantees that the out-of-sample

performance of the two procedures must coincide.
We consider the same Gaussian, homoskedastic, linear regression model described at the beginning

of this section. We set d= 100 and set β = (1, . . . ,1)⊤ and σǫ = 1. We consider different training sizes
ntrain ∈ {200,250,300, . . . ,2000}. For each data realization we implement the formula in Lemma 2 in
[73] to obtain a new regularization parameter δLASSO. For the

√
LASSO we once again use the tuning

parameter in [5]. The testing distribution is the worst-case distribution derived in Corollary 1.
Panel a) in Figure (D.3) reports the ratio of δLASSO relative the oracle regularization parameter for

the LASSO. For each sample size ntrain, the figure reports the average ratio across data realizations.
The figure shows that in order for the LASSO to have the same out-of-sample performance as the√

LASSO, the new regularization parameter needs to be, on average, 10 times larger than the standard
tuning parameter. Panel b) in Figure (D.3) confirms that the new regularization parameter indeed aligns
the out-of-sample performance of both procedures.

6In our set-up this equals σǫd/‖β‖2.
7We implement the LASSO using the Matlab function lasso.
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(a) Ridge: d= 10
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(b) LASSO: d= 10
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(c) Ridge: d= 100
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(d) LASSO: d= 100

Fig D.1: Relative out-of-sample prediction error of the Ridge, LASSO, and
√

LASSO estimators with
respect to the OLS estimator. No perturbation in testing data.

√
LASSO estimator is the solid line. A

dashed line is used for the other estimators. β = (1, . . . ,1)⊤ (vector of d ones), σε = 1.
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(a) Ridge: d= 10
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(b) LASSO: d= 10
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(c) Ridge: d= 100
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Fig D.2: Relative out-of-sample prediction error of the Ridge, LASSO, and
√

LASSO estimators with
respect to the OLS estimator. Perturbed testing data.

√
LASSO estimator is the solid line. A dashed

line for the other estimators. β = (1, . . . ,1)⊤ (vector of d ones), σε = 1.
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(a) δLASSO/δoracle
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Fig D.3: Panel a) reports the regularization parameter, δLASSO, such that both the LASSO and√
LASSO coincide; following Lemma 2 in [73]. Panel b) reports the relative out-of-sample predic-

tion for both the
√

LASSO and the LASSO, but with the latter using the regularization parameter from
Lemma 2 in [73].
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